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Thank you! 

!! Thank you to Thierry, Laurent, and                           
the organizers… 

!! Thank you to all of you for coming… 

!! … and my family thanks you too! 



Why are visualization tools/ 
frameworks important? 

!! Visualization and analysis is an enabling 
technology: it is important that we have products 
that we can deploy to users. 

!! Visualization is often explorative 

!!Users want to employ a variety of rich techniques to 
better understand their data.  Visualization tools 

enable this. 

!! Visualization tools can be written for many 
application areas simultaneously. 

!!The large investment it takes to make a tool can pay 

off by benefiting many groups. 



Why are visualization tools/ 
frameworks important? 

!! Visualization and analysis is an enabling 
technology: it is important that we have products 
that we can deploy to users. 

!! Visualization is often explorative 

!!Users want to employ a variety of rich techniques to 
better understand their data.  Visualization tools 

enable this. 

!! Visualization tools can be written for many 
application areas simultaneously. 

!!The large investment it takes to make a tool can pay 

off by benefiting many groups. 

This course is primarily about visualization tools/ 

frameworks: what techniques they use and how to 
make them be successful. 



Overview of this course 

!! Monday, June 13th, 2011 

!! Lecture #1 (right now!): 90 minutes 
"! Course overview 

"! Three Strategies for Three Epochs 

!! Lecture #2: 60 minutes 

"! Data flow networks 

"! VTK 

"! OpenDX 

!! Lecture #3: 30 minutes 

"! MPI overview 

!!Overview of Hands-On Session #1 

!!Hands-On Session #1 

"! Read + Process + Render 



Overview of this course 

!! Tuesday June 14th, 2011 

!!Lecture #4: 90 minutes 

"!Parallel visualization 

"! Architecture 

"! “Contracts” 

"! Rendering 

"! IceT 

"!Performance study 

!!Overview of Hands-On Session #2 

!!Hands-On Session #2 

"!Parallelizing your program 



Overview of this course 

!! Wednesday June 15th, 2011 

!!Lecture #5: 60 minutes 

"!Non-embarrassingly parallel algorithms 

!!Lecture #6: 30 minutes 

"!Hybrid parallelism 

!!Overview of Hands-On Session #3 

!!Hands-On Session #3 (for half of you) 

"!Accelerating your processing 

"!A non-embarrassingly parallel algorithm 



Overview of this course 

!! Thursday June 16th, 2011 

!!Lecture #7: 120 minutes 

"!Smart techniques: 

"! In situ visualization 

"! Multi-resolution visualization 

"! Query driven visualization 

"!Overview of Hands-On Session #4 

!!Hands-On Session #3 (for half of you) 

"!Accelerating your processing 

"!A non-embarrassingly parallel algorithm 

!!Hands-On Session #4 (for half of you) 

"!Performance analysis 



Overview of this course 

!! Friday June 17th, 2011 

!!Lecture #8: 120 minutes 

"!Putting it all together: 

"! What it takes to deploy a visualization tool 

"! “Tutorial” 

"! Demonstrate UI 

"! Demonstrate power of data flow networks 

!!Hands-On Session #4 (for half of you) 

"!Performance analysis 

"! (I will not attend this session.) 



Bonus mini-lecture 

!! How can we better understand data? 

!!High resolution data? 

!!Ensembles of data? 



{TERA|PETA|EXA}-SCALE 
VISUALIZATION: 

Three Strategies For Three Epochs 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011 



Supercomputing 101 

!! Why simulation?  
!! Simulations are sometimes more cost effective than 

experiments. 

!!New model for science has three legs: theory, experiment, and 
simulation. 

!! FLOPs: How supercomputers are measured 
!! 1 FLOP = 1 Floating point operation per second 

!! 1 GigaFLOP = 1 billion FLOPs 

!! 1 TeraFLOP = 1000 GigaFLOPs, 1 PetaFlop = 1,000,000 
GigaFLOPs,     1 ExaFLOP = 1,000,000,000 GigaFLOPs 



Supercomputing 101 

!! What are the three epochs? 

!! Terascale = TeraFLOP + TeraBytes of memory + Tera/
PetaBytes on disk  

!! Petascale = PetaFLOPs + petabytes on disk + petabytes of 
memory 

!! Exascale = ExaFLOPs + exabyte disk + petabytes of memory 

!! Why terascale/petascale/exascale? 
!!More compute cycles, more memory, etc, lead for faster and/

or more accurate simulations. 



Petascale computing arrived in 
2009. 

LANL RoadRunner ORNL Jaguar 

Julich JUGene UTK Kraken 



An order of magnitude jump in 
computing in the next year. 

!! Two ~20PFlop machines will be online in 2011/2012 

LLNL Sequoia NCSA BlueWaters 



A really big change in computing  
happened last year… 

China’s Tianhe machine 

… and this change is the springboard 

to exascale computing. 



International Exascale Software Project 
www.exascale.org 

The International Exascale 

Software Roadmap,  

J. Dongarra, P. Beckman, et al., 

International Journal of High 

Performance Computer 

Applications 25(1), 2011, ISSN 

1094-3420. (Publ. 6 Jan 2011) 



How does increased computing power 
affect the data to be visualized? 

Large # of time steps 

Large ensembles 

High-res meshes 

Large # of variables 

/ more physics 

Your mileage may vary; some 

simulations produce a lot of data 
and some don’t. 

Thanks!: Sean Ahern & Ken Joy 



Some history behind this 
presentation… 

!!“Architectural Problems and Solutions for Petascale 

Visualization and Analysis” 



Some history behind this 
presentation… 

!! “Why Petascale Visualization Will Changes The Rules” 

NSF Workshop on Petascale I/O 



Some history behind this 
presentation… 

!! “Why Petascale Visualization Will Changes The Rules” 

NSF Workshop on Petascale I/O 

“Exascale Visualization: Get Ready For a Whole New World” 



Fable: The Boy Who Cried Wolf 

!! Once there was a shepherd boy who had to look 
after a flock of sheep.  One day, he felt bored and 
decided to play a trick on the villagers.  He 
shouted, “Help!  Wolf! Wolf!”  The villagers heard 
his cries and rushed out of the village to help the 
shepherd boy.  When they reached him, they asked, 
“Where is the wolf?”  The shepherd boy laughed 
loudly, “Ha, Ha, Ha! I fooled all of you.  I was only 
playing a trick on you.” 



Fable: The Boy Who Cried Wolf 

!! Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Big Big Data!”  The funders heard his cries 
and sent lots of money to help the viz expert.  
When petascale arrived, they asked, “Where is the 
problem?”  The viz expert shrugged and said, “The 
problem isn’t quite here yet, but it will be soon.” 

This is NOT the story of this presentation. 



The message from this 
presentation… 

Petascale Visualization Exascale Visualization 

I/O Bandwidth 
I/O Bandwidth 

Data Movement 

Data Movement’s     

4 Angry Pups 

Terascale Visualization 



Outline   

!! The Terascale Strategy 

!! The I/O Wolf & Petascale Visualization 

!! An Overview of the Exascale Machine 

!! The Data Movement Wolf and Its 4 Angry Pups 

!! Under-represented topics 

!! Conclusions 
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Production visualization tools use 
“pure parallelism” to process data.  

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of 

data 
(on disk) 

Read Process Render 

Processor 0 

Read Process Render 

Processor 1 

Read Process Render 

Processor 2 

Parallelized visualization 

data flow network 

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code 



Pure parallelism 

!! Pure parallelism is data-level parallelism, but… 

!!Multi-resolution can be data-level parallelism 

!!Out-of-core can be data-level parallelism 

!! Pure parallelism: “brute force” … processing full 
resolution data using data-level parallelism 

!! Pros: 

!!Easy to implement 

!! Cons: 

!!Requires large I/O capabilities 

!!Requires large amount of primary memory 



Pure parallelism and today’s tools 

!! Three of the most popular end user visualization 
tools -- VisIt, ParaView, & EnSight -- primarily 
employ a pure parallelism + client-server strategy. 

!!All tools working on advanced techniques as well 

!! Of course, there’s lots more technology out there 
besides those three tools… 
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!! The Data Movement Wolf and Its 4 Angry Pups 

!! Under-represented topics 

!! Conclusions 



I/O and visualization 

"! Pure parallelism is almost 

always >50% I/O and 
sometimes 98% I/O 

"! Amount of data to visualize 
is typically O(total mem) 
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"! Two big factors:  

①! how much data you have to read 

②! how fast you can read it 

"! # Relative I/O (ratio of total memory and I/O) is key 



Trends in I/O 

Machine Year Time to write memory 

ASCI Red 1997 300 sec 

ASCI Blue Pacific 1998 400 sec 

ASCI White 2001 660 sec 

ASCI Red Storm 2004 660 sec 

ASCI Purple 2005 500 sec 

Jaguar XT4 2007 1400 sec 

Roadrunner 2008 1600 sec 

Jaguar XT5 2008 1250 sec 

c/o David Pugmire, ORNL 



Why is relative I/O getting slower? 

!! I/O is quickly becoming a dominant cost in the 
overall supercomputer procurement. 

!!And I/O doesn’t pay the bills. 

!! Simulation codes aren’t as exposed. 

We need to de-emphasize I/O in our 

visualization and analysis techniques. 



There are “smart techniques” that    
de-emphasize memory and I/O. 

!! Out of core 

!! Data subsetting 

!! Multi-resolution 

!! In situ 



Out-of-core iterates pieces of data 
through the pipeline one at a time. 
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Out-of-core: pros and cons 

!! Pros: 

!!Lower requirement for primary memory 

!!Doesn’t require big machines 

!! Cons: 

!!Still paying large I/O costs 

!!Slow 



Data subsetting eliminates pieces that 
don’t contribute to the final picture. 
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Data Subsetting: pros and cons 

!! Pros: 

!!Less data to process (less I/O, less memory) 

!! Cons: 

!!Only applicable to some algorithms 



Multi-resolution techniques use 
coarse representations then refine. 
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Multi-resolution techniques 

!! Pros 

!!Drastically reduce I/O & memory requirements 

!!Confidence in pictures; multi-res hierarchy addresses 
“many cells to one pixel issue” 

!! Cons 

!!Not always meaningful to process simplified version of 
the data. 

!!How do we generate hierarchical representations 
during dump?  What costs do they incur (data 
movement costs, storage costs)? 



In situ processing does visualization 
as part of the simulation. 

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

GetAccess 

ToData 
Process Render 

Processor 0 

Parallelized visualization data flow network 
Parallel Simulation Code 

GetAccess 

ToData 
Process Render 

Processor 1 

GetAccess 

ToData 
Process Render 

Processor 2 

GetAccess 

ToData 
Process Render 

Processor 9 

… … … … 



In situ 

!! In situ processing can mean multiple things 

!!Will discuss this more later in the talk 

!! Common perceptions of in situ 

!!Pros: 

"!No I/O & plenty of compute 

!!Cons: 

"!Very memory constrained 

"!Some operations not possible 

"! Once the simulation has advanced, you cannot go back and 
analyze it 

"!User must know what to look a priori 



Petascale visualization will likely 
require a lot of solutions. 

All visualization and analysis work 

Multi-res 

In situ 

Out-of-core 

Data subsetting 

Do remaining ~5% on SC  

w/ pure parallelism 
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Exascale assumptions 

!! The machine will be capable of one exaflop. 

!! The machine will cost < $200M. 

!! The machine will use < 20MW. 

!! The machine may arrive as early as 2018. 



Hurdle #1: power requires slower 
clocks and greater concurrency 

c/o SciDAC Review 16, February 2010 



Accelerator technologies 

!! Currently simultaneously 
thinking about two different 
accelerator technologies: 
!! IBM BlueGene’s successor – some 

architectural merger of BlueGene, 
Power, and Cell 

!! GPU / GPU evolution 

!! Referred to as “swim lanes”: a 
visual element used in process flow 
diagrams, or flowcharts, that 
visually distinguishes 
responsibilities for sub-processes 
of a business process.  

I/O Disk 

Accelerator 

GPU BG 
Net-

work 
… 



Hurdle #2: memory capacity eats 
up the entire fiscal budget 
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Hurdle #3: memory bandwidth 
eats up the entire power budget 
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The change in memory bandwidth to compute 
ratio will lead to new approaches. 

!! Example: linear solvers 

!! They start with a rough approximation and converge 
through an iterative process. 

"! 1.125 # 1.1251 # 1.125087 # 1.12508365 

!! Each iteration requires sending some numbers to 
neighboring processors to account for neighborhoods split 
over multiple nodes. 

!! Proposed exascale technique: devote some threads of the 
accelerator to calculating the difference from the previous iteration 

and just sending the difference. 

"! Takes advantage of “free” compute and minimizes expensive 
memory movement. 

Inspired by David Keyes, KAUST 



The trade space for exascale is 
very complex. 

memory 

nodes 

c/o A. White, LANL 

Total system 

cost 

Minimum 

memory per 
node 

requirement 

One exaflop 

Feasible 

systems 



Exascale: a heterogeneous, distributed 
memory GigaHz KiloCore MegaNode system 

~3 

c/o P. Beckman, Argonne  



Architectural changes will make 
writing fast and reading slow. 

!! Great idea: put SSDs on the node 

!!Great idea for the simulations … 

!!… scary world for visualization and analysis 

"!We have lost our biggest ally in lobbying the HPC 

procurement folks 

"!We are unique as data consumers. 

!! $200M is not enough… 

!!The quote: “1/3 memory, 1/3 I/O, 1/3 networking … 
and the flops are free” 

!!Budget stretched to its limit and won’t spend more on  
I/O. 



Summarizing exascale visualization 

!! Hard to get data off the machine. 

!!And we can’t read it in if we do get it off. 

!! Hard to even move it around the machine. 

!! # Beneficial to process the data in situ. 



Outline   

!! The Terascale Strategy 

!! The I/O Wolf & Petascale Visualization 

!! An Overview of the Exascale Machine 

!! The Data Movement Wolf and Its 4 Angry Pups 

!!Pup #1: In Situ Systems Research 

!! Under-represented topics 

!! Conclusions 



Summarizing flavors of in situ 
In Situ 
Technique 

Aliases Description Negative Aspects 

Tightly 
coupled 

Synchronous, 
co-processing 

Visualization and analysis 
have direct access to 
memory of simulation code 

1)! Very memory 
constrained 

2)! Large potential impact 
(performance, crashes) 

Loosely 
coupled 

Asynchronous, 
concurrent 

Visualization and analysis 
run on concurrent resources 
and access data over 
network 

1)! Data movement costs 
2)! Requires separate 

resources 

Hybrid Data is reduced in a 
tightly coupled setting and 
sent to a concurrent 
resource 

1)! Complex 
2)! Shares negative aspects 

(to a lesser extent) of 
others 



Possible in situ visualization scenarios 

Visualization could be a service in this system (tightly coupled)… 

… or visualization could be done on a separate node located nearby dedicated to 

visualization/analysis/IO/etc. (loosely coupled) 
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… 
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Physics #n 
… 

Services 

Physics #1 

Physics #2 

Physics #n 
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Services 

One of many 

nodes dedicated 
to vis/analysis/IO 

Specialized vis & 

analysis resources 
Viz 

Viz 

Viz 

Viz 



Possible in situ visualization scenarios 

Visualization could be a service in this system (tightly coupled)… 

… or visualization could be done on a separate node located nearby dedicated to 

visualization/analysis/IO/etc. (loosely coupled) 
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… 
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Physics #n 
… 

Services 

Physics #1 

Physics #2 

Physics #n 
… 

Services 

One of many 

nodes dedicated 
to vis/analysis/IO 

Accelerator, similar 

to HW on rest of 
exascale machine 

(e.g. GPU) 

… or maybe this is 

a high memory 
quad-core running 

Linux! 

Specialized vis & 

analysis resources 

… or maybe the data 

is reduced and sent to 
dedicated resources 

off machine! 

… And likely many more configurations 

Viz 

Viz 

Viz 

Viz 

We will possibly need to run on: 

-!The accelerator in a lightweight way 
-!The accelerator in a heavyweight way 

-!A vis cluster (?) 

We don’t know what the best technique 

will be for this machine. 
And it might be situation dependent. 



Reducing data to results (e.g. pixels 
or numbers) can be hard. 

!! Must to reduce data every step of the way. 

!!Example: contour + normals + render 

"! Important that you have less data in pixels than you had 

in cells. (*) 

"!Could contouring and sending triangles be a better 

alternative? 

!!Easier example: synthetic diagnostics 
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!! The Data Movement Wolf and Its 4 Angry Pups 

!!Pup #2: Programming Languages 

!! Under-represented topics 

!! Conclusions 



Angry Pup #2: Programming Language 

!! VTK: enables the community to develop diverse 
algorithms for diverse execution models for diverse 
data models 

!! Important benefit: “write once, use many” 

!!Substantial investment 

!! We need something like this for exascale. 

!!Will also be a substantial investment 

!! Must be: 

!!Lightweight 

!!Efficient 

!!Able to run in a many core environment 

OK, what language is this in?  

OpenCL?  DSL? 
… not even clear how to start 



Message-passing remains important at 
the exascale, but we lose its universality 

Pax MPI 

(1994 - 2010) 

MPI will be 

combined with 

other 
paradigms 

within a shared 

memory node 

(OpenMP, 

OpenCL, 
CUDA, etc.) 

Codes will not 

be hardware- 

universal 
again, until a 

lengthy 

evolutionary 

period passes 

c/o David Keyes, KAUST 
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!! The Terascale Strategy 
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!! The Data Movement Wolf and Its 4 Angry Pups 
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!! Under-represented topics 

!! Conclusions 



Memory efficiency 

!! 64 PB of memory for 1 billion cores means 64MB 
per core 

!! (May be 10 billion cores and 6.4MB per core) 

!! Memory will be the 2nd most precious resource on 
the machine. 

!!There won’t be a lot left over for visualization and 

analysis. 

!! Zero copy in situ is an obvious start 

!!Templates?  Virtual functions? 

!! Ensure fixed limits for memory footprints 
(Streaming?) 



Outline   

!! The Terascale Strategy 

!! The I/O Wolf & Petascale Visualization 

!! An Overview of the Exascale Machine 

!! The Data Movement Wolf and Its 4 Angry Pups 

!!Pup #4: In Situ-Fueled Exploration 

!! Under-represented topics 

!! Conclusions 



Do we have our use cases covered? 

!! Three primary use cases: 

!!Exploration 

!!Confirmation 

!!Communication 

Examples: 
Scientific discovery 
Debugging 

Examples: 
Data analysis 
Images / movies 
Comparison 

Examples: 
Data analysis 
Images / movies 

? 

In situ 



Can we do exploration in situ? 

Having a human in the loop may prove 

to be too inefficient.   
(This is a very expensive resource to 

hold hostage.) 



Enabling exploration via in situ 
processing 

!! Requirement: must transform the data in a way that 

both reduces and enables meaningful exploration. 

!! Subsetting 

!! Exemplar subsetting approach: query-driven visualization 

"! User applies repeated queries to better understand data 

"! New model: produce set of subsets in situ, explore it with 
postprocessing 

!! Multi-resolution 

!!Old model: user looks at coarse data, but can dive down to 
original data. 

!!New model: branches of the multi-res tree are pruned if 
they are very similar.  (compression!)   



Enabling exploration via in situ 
processing 

!! Requirement: must transform the data in a way that 

both reduces and enables meaningful exploration. 

!! Subsetting 

!! Exemplar subsetting approach: query-driven visualization 

"! User applies repeated queries to better understand data 

"! New model: produce set of subsets in situ, explore it with 
postprocessing 

!! Multi-resolution 

!!Old model: user looks at coarse data, but can dive down to 
original data. 

!!New model: branches of the multi-res tree are pruned if 
they are very similar.  (compression!)   

It is not clear what the best way is to 

use in situ processing to enable 
exploration with post-processing …     

it is only clear that we need to do it. 
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Under-represented topics in this talk. 

!! Two topics we will discuss later: 

!!We will have quintillions of data points … how do we 
meaningfully represent that with millions of pixels? 

!!Data is going to be different at the exascale: ensembles, 
multi-physics, etc. 

"!The outputs of visualization software will be different. 

!! Accelerators on exascale machine are likely not to have 
cache coherency 

!!How well do our algorithms work in a GPU-type setting? 

!!We have a huge investment in CPU-SW.  What now? 

!! What do we have to do to support resiliency issue? 
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It is funny how this happens… 

!! All petascale processing techniques still are very 
relevant at the exascale. 

!! In situ: data movement wolf 

!!Out-of-core: Pup #3: memory efficiency 

!!Multi-res: Pup #4: exploration 

!!Data subsetting: Pup #4: exploration 

!!Pure parallelism: experiences at massive concurrency 

will be critical 



Exascale Summary 

!! We are unusual: we are data consumers, not data 
producers, and the exascale machine is being 
designed for data producers 

!! So the exascale machine will almost certainly lead 
to a paradigm shift in the way visualization 
programs process data. 

!!Where to process data and what data to move will be 
a central issue. 



Exascale Summary 

!! In addition to the I/O “wolf”, we will now have to 

deal with a data movement “wolf”, plus its 4 pups: 

1)! In Situ System 

2)! Programming Language 

3)! Memory Efficiency 

4)! In Situ-Fueled Exploration   



Three Strategies for Three Epochs 

terascale petascale exascale 

In situ 

Multi-resolution 

Pure parallelism 

Out-of-core 

Data subsetting 



Summary 

!! There are three distinct strategies for the terascale, 
petascale, and exascale supercomputing 

!!Visualization researchers are interested in different 
processing techniques depending on what scale of 
supercomputing they are planning for. 

!! Lecture #2: can we write visualization software that 
will work in lots of different processing 
environments? 



Data Flow Networks 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011 
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Data flow networks 101 

!! Work is performed by a pipeline 

!! A pipeline consists of data 

objects and components (sources, 
filters, and sinks) 

File Reader 

(Source) 

Slice Filter 

Contour 

Filter 

Renderer 

(Sink) 

!! Data objects: contain data 

"! Typically “problem-sized” data. 

!! Sources: source of data 

"! Examples: file readers, geometry generators 

!! Sinks: sinks for data 

"! Examples: file writers, rendering modules 

!! Filters: both sink and source 

"! Purpose: manipulate input data object to 
create new output 
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Data flow networks 101 

!! Work is performed by a pipeline 

!! A pipeline consists of data 

objects and components (sources, 
filters, and sinks) 

File Reader 

(Source) 

Slice Filter 

Contour 

Filter 

Renderer 

(Sink) U
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#! Pipeline execution begins 
with a “pull”, which starts 
Update phase 

#! Data flows from component 
to component during the 
Execute phase 



Data flow networks: pluses & 
minuses 

!! Plusses 

!! Interoperability / Flexibility 

!!Extensible 

!! Minuses 

!!Memory efficiency 

!!Performance efficiency 

!!Easy to add new algorithms, but hard to extend the 

data model 



Data flow networks: strengths 

!! Flexible usage 

!!Networks can be multi-input / 
multi-output 

!! Interoperability of modules 

!! Embarrassingly parallel 
algorithms handled by base 
infrastructure 

!! Easy to extend 

!!New derived types of filters 

Abstract filter 

Slice filter 

Contour filter 

???? filter 

Inheritance 

Source 

Sink 

Filter A Filter B 

Filter C 

Flow of data 



Data flow networks: weaknesses 

!! Execution of modules happens in stages 

!!Algorithms are executed at one time 

"!Cache inefficient 

!!Memory footprint concerns 

!! Some implementations fix the data model. 
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!! Data flow networks overview 

!! Data flow networks implementations 

!!VTK 

!!OpenDX 



Visualization with VTK 

Content from: Erik Vidholm, Univ of Uppsula, Sweden 

David Gobbi, Robarts Research Institute, London, Ontario, Canada 



VTK – The Visualization ToolKit 

!! Open source, freely available software for 3D 
computer graphics, image processing, and 
visualization 

!! Managed by Kitware Inc. 

!! Use C++, Tcl/Tk, Python, Java 



True visualization system  

!! Visualization techniques for visualizing 
!!Scalar fields 

!!Vector fields 

!!Tensor fields 

!! Polygon reduction 

!! Mesh smoothing 

!! Image processing 

!! Your own algorithms 



Additional features 

!! Parallel support (message passing, multithreading) 

!! Stereo support 

!! Integrates easily with Motif, Qt, Tcl/Tk, Python/Tk, 
X11, Windows, ... 

!! Event handling 

!! 3D widgets 



3D graphics 

!! Surface rendering 

!! Volume rendering 

!!Ray casting 

!!Texture mapping (2D) 

!!Volume pro support 

!! Lights and cameras 

!! Textures 

!! Save render window to .png, .jpg, ...  
(useful for movie creation) 



Objects 

!! Data objects   

!!Next slide 

!! Process objects 

!!Source objects (vtkReader, vtkSphereSource) 

!!Filter objects (vtkContourFilter) 

!!Mapper objects (vtkPolyDataMapper) 



Data model 

Cell Data & Point Data 







Visualization continued 

!! Scalar algorithms 

!! Iso-contouring 

!!Color mapping 

!! Vector algorithms 

!!Hedgehogs 

!!Streamlines / streamtubes 

!! Tensor algorithms 

!!Tensor ellipsoids 



The visualization pipeline 

DATA 

FILTER MAPPING 

DISPLAY 

Visualization algorithms 

Interactive feedback 





Imaging 

!! Supports streaming => huge datasets 

!! vtkImageToImageFilter 

!!Diffusion 

!!High-pass / Low-pass (Fourier) 

!!Convolution 

!!Gradient (magnitude) 

!!Distance map 

!!Morphology 

!!Skeletons 



Summary + 

!! Free and open source 

!! Create graphics/visualization applications fairly fast  

!! Object oriented - easy to derive new classes  

!! Build applications using "interpretive" languages Tcl, 
Python, and Java  

!! Many (state of the art) algorithms  

!! Heavily tested in real-world applications 

!! Large user base provides decent support  
!! Commercial support and consulting available 



Summary - 

!! Not a super-fast graphics engine due to portability 
and C++ dynamic binding – you need a decent 
workstation 

!! Very large class hierarchy => learning threshold 
might be steep 

!! Many subtleties in usage 
!! Pipeline execution model 

!! Memory management 





Example – Vector field visualization 



The visualization pipeline - example 

vtkStructuredPointsReader 

”hydrogen.vtk” 

vtkMarchingCubes 

vtkPolyDataMapper 

vtkActor 

vtkRenderer 

vtkRenderWindow 
vtkRenderWindowInteractor 



Python example: visualization 
hydrogen molecule 

# File: isosurface.py  

import vtk  

# image reader  
reader = vtk.vtkStructuredPointsReader() 

reader.SetFileName("hydrogen.vtk") 

reader.Update()  

# bounding box  
outline = vtk.vtkOutlineFilter()  

outline.SetInput( reader.GetOutput() )  

outlineMapper = vtk.vtkPolyDataMapper()  
outlineMapper.SetInput( outline.GetOutput() )  

outlineActor = vtk.vtkActor()  
outlineActor.SetMapper( outlineMapper ) 

outlineActor.GetProperty().SetColor(0.0,0.0,1.0) 

Must call 
update to 
read! 

Pipeline 
connections 



Example continued 
# iso surface 
isosurface = vtk.vtkContourFilter()  
isosurface.SetInput( reader.GetOutput() )  
isosurface.SetValue( 0, .2 )  
isosurfaceMapper = vtk.vtkPolyDataMapper() 
isosurfaceMapper.SetInput( isosurface.GetOutput() ) 
isosurfaceMapper.SetColorModeToMapScalars()  
isosurfaceActor = vtk.vtkActor()  
isosurfaceActor.SetMapper( isosurfaceMapper )  

# slice plane  
plane = vtk.vtkImageDataGeometryFilter()  
plane.SetInput( reader.GetOutput() )  
planeMapper = vtk.vtkPolyDataMapper()  
planeMapper.SetInput( plane.GetOutput() )  
planeActor = vtk.vtkActor()  
planeActor.SetMapper( planeMapper ) 

vtkContourFilter 
chooses the 
appropriate 
method for the 
data set 



Example continued 

# a colorbar  
scalarBar = vtk.vtkScalarBarActor()  
scalarBar.SetTitle("Iso value")  

# renderer and render window  
ren = vtk.vtkRenderer()  
ren.SetBackground(.8, .8, .8)  
renWin = vtk.vtkRenderWindow()  
renWin.SetSize( 400, 400 )  
renWin.AddRenderer( ren )  

Creates a 
legend 
from the 
data and a 
lookup 
table 



Example continued 

# render window interactor  

iren = vtk.vtkRenderWindowInteractor()  
iren.SetRenderWindow( renWin )  

# add the actors  

ren.AddActor( outlineActor )  

ren.AddActor( isosurfaceActor )  
ren.AddActor( planeActor )  

ren.AddActor( scalarBar )  

# this causes the pipeline to ”execute” 

renWin.Render()  

# initialize and start the interactor  
iren.Initialize()  

iren.Start()  

The renWin.Render() 

calls Update() on the 
renderer, which calls 

Update() for all its 
actors, which calls… 

The 

RenderWindowInteractor 
contains functions for 

mouse/keyboard 
interaction 



The VTK file format 

# vtk DataFile Version 2.0 
Hydrogen orbital 
ASCII 
DATASET STRUCTURED_POINTS 
DIMENSIONS 64 64 64 
ORIGIN 32.5 32.5 32.5 
SPACING 1.0 1.0 1.0 
POINT_DATA 262144 

SCALARS probability float 
LOOKUP_TABLE default 
0.0 0.0 0.01 0.01 ….. 

- Many modules to 
write VTK files 



VTK and C++ 

!! Build with CMake and your favorite compiler 

!! CMake generates makefiles or project files for your 
environment 

!! Use the resulting file(s) to build your executable 

!! With C++ you have full control and can derive own 

classes, but you need to write many lines of code… 



VTK resources 

!! ww.vtk.org 
!!Download (source and binaries) 
!!Documentation 
!!Mailing lists 
!! Links 
!! FAQ, Search 

!! ww.kitware.com 
!!VTK Textbook 
!!VTK User’s guide 
!!Mastering CMake 



Outline 

!! Data flow networks overview 

!! Data flow networks implementations 

!!VTK 

!!OpenDX $ courtesy Greg Abram!! 



OpenDX History 

!! 1988  Work begins at IBM TJ Watson Research Center to develop a 
data-parallel “Visualization Supercomputer” 

!! Goals: 

"! Extreme performance 

"! Accessibility to non-sophisticated users 

!! Technology: 

"! Hardware: 32-way cache-coherent SMP NUMA system based on Intel 
i860 processors – the IBM PVS 

"! Software: Scientific visualization environment based on a data-flow-
like execution model, a visual programming paradigm and a 
comprehensive data model 

!! 1991 IBM Visualization Data Explorer software released on wide 
range of workstation-level platforms including SMP support 

!! 1996 Open-sourced as OpenDX 



Architecture 

!! Client / Server: GUI is client, Executive is server, communication via 
sockets and X protocol 

!! GUI: 

!! Presents “data flow” programming environment to application programmer; 

!! Presents application GUI (e.g. control panels, image windows) to application 
user; 

!! Sends program “network” to Executive and receives images for display 

!! Executive: 

!! Implements an object-oriented data model for the representation of data; 

!! Manages cache of previously computed results; 

!! Analyzes networks to determine what needs to be done for a given 
execution based on network connectivity and availability of prior results; and 

!! Calls module code to perform required computation 



General Directed Acyclic Graphs 
Enables user to compute multiple inputs to a 
module: here, the vector field and starting point set 
inputs of streamline module 

1.! Import data 

2.! compute the 0-contour of a scalar field in an 

arbitrary plane 

3.! Sample contours for streamline starting points 

4.! Compute gradient of scalar field 

5.! Compute streamlines  in gradient field 

6.! Color and tube-ify contours 

7.! Show streamlines, contours from 2 different  

viewpoints 

1 

2 

4 

5 

3 

6 

7 



Programming- vs. Application-Interface 

!! Interactors corresponding  to network inputs are 
placed into control panels  

!! Users need never see visual programming 

environment 

VPE Programming UI 

Application UI 



Data Caching 

!! Module results are cached for re-use in interactive 
and iterative executions of network 

!! Module are pure functions of their inputs 
!!No side-effects 

!!Modules run completely; no partial execution of modules 
based on downstream factors 

!! Executive maintains object cache: 
!!Cache tags formed from producing module name and the 

cache tags of the producing module’s inputs 

!! Executive can determine whether a result is available 
without calling the module code 



“Data Flow” By Network Analysis 

1.! Identify data sinks – e.g. render windows, exporters 

2.! Traverse graph upward from sinks to identify 
connected modules 

3.! Traverse resulting subgraph downward from 
connected inputs to assign cache tags 

4.! Traverse upward to find sub-subgraph containing 
uncached results 

5.! Traverse sub-subgraph downward to perform 

required computations 



Interaction causes re-execution 

•! User decides streamlines are too 
sparse, uses the interactor in the 
control panel to increase the number 
of samples to be taken in the iso-
contours 

•! Poor-man’s stream-surfaces? 



Executive determines dependent 
modules and runs them 



OpenDX Summary 

!! Visualization programs are generalized DAG 
networks rather than pipelines 

!!Aimed at developing “visualization applications”, 
rather than visualizations themselves 

!!Some programs consisted of hundreds or thousands of 
modules 

!! Control flow is determined by program analysis 
rather than true push- or pull-model dataflow 

!! Extensions to execution model support conditional 
execution and looping 



Data flow networks: summary 

!! Data flow networks is a design that: 

!!allows for users to explore data in dynamic and 
unforeseen ways 

!! is highly extensible 

!! is very popular in visualization software 

!!Tomorrow: can be used with many processing techniques 



MPI Overview 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 14, 2011 



Parallel Computer Memory 
Architectures  

!! Shared Memory 

!!Uniform Memory Access (UMA) 

!!Non-Uniform Memory Access (NUMA)  

C/o Amit Kumar, Old Dominion 



Parallel Computer Memory 
Architectures …contd. 

!! Distributed Memory 

C/o Amit Kumar, Old Dominion 



Parallel Computer Memory 
Architectures …contd. 

!! Hybrid Distributed-Shared Memory 

!!The largest and fastest computers in the world today 

employ both shared and distributed memory 

architectures.  

C/o Amit Kumar, Old Dominion 



Comparison of Shared and Distributed Memory Architectures 

Architecture UMA NUMA Distributed 

Communications 

MPI  

Threads  

OpenMP  
shmem 

MPI  

Threads  

OpenMP  
Shmem 

MPI (or hybrid)  

Scalability 
to 10s of 

processors 
to 100s of processors to 100000s of processors  

Draw Backs 
Memory-CPU 

bandwidth 

Memory-CPU 

bandwidth Non-

uniform access 
times 

System administration  

Programming is hard to develop and 

maintain 

C/o Amit Kumar, Old Dominion 



What is MPI? 

!! MPI = message passing interface 

!! De facto standard for programming distributed 
memory machines 

!! API that enables coordination of parallel programs 
via message passing (send & receive) 

!! Enables portability.  Programmers make MPI calls to 
coordinate processing, MPI translates to network 
calls. 



Historical Development of MPI 

!! 1980-early 1990: distributed memory parallel 
computing application develops and calls for a standard 

!! 1992: MPI Forum established 

!! 1993: draft MPI standard presented at SC’93 

!! May, 1994: MPI-1 final version released, 115 
routines defined 

!! 1996; MPI-2 finalized, which picked up “difficult” 
issues that MPI-1 intentionally left off. 

!! Most vendors have full implementation of MPI-1, 

but partial implementation of MPI-2 
C/o David Chen, IBM 



Using MPI 

!! Two ways to compile: 

!!Manually tell compiler library location 

"!#include <mpi.h> 

"!gcc -I/path/to/mpi/include file.c –L/path/to/mpi/lib -lmpi 

!!Special compiler that manages environment 

"!mpicc file.c 

!! Special way to invoke MPI programs: 

!!mpirun –np 8 my_program 

!!qsub / aprun 

!!Many more… 





Sustainable High Performance 
Computing
*HoS* : MPI

Mauro Bianco
Texas A&M University

Thierry Carrard
CEA / DIF
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Opening questions / remarks

– Questions about the morning course

– Remarks / special requests for this HoS



Examples fast forward

– Hello World
� Initialization of the runtime
� Ensure everyone is ready to compile and execute

– String search
� Divide and conquer

– Pi computation
� Scalable problem, no communication bottleneck

– Matrix multiply
� A first practical numerical problem



Getting started: MPI

• #include <mpi.h>

• The first line of main(argc, argv) must be
– MPI_Init(&argc, &argv);

• MPI_COMM_WORLDis the initial communicator

• Important initial information:
– int id, nprocs;

– MPI_Comm_rank(MPI_COMM_WORLD, &id);

– MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

• Last Statement is
• MPI_Finalize()



MPI Execution

• Different processes each of them with an 
integer ID from 0 to P-1

• Communicate through send/receive
• Beware of low level protocol implementation

• This can cause a deadlock depending on 
size of data

SEND(data) SEND(data)

RECV(data) RECV(data)



MPI send

MPI_Send( BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR); /* id space */

MPI Send is a blocking operation: when function 
returns BUFFhas been sent to destination and can 
be reused.



MPI Receive

MPI_Recv( BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

&status); /* info about data */

MPI Recv is a blocking operation: when function 
returns BUFFcontains payload data from a 
message matching TAG.



MPI Isend

MPI_Isend( BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

REQUEST); /* to check status */

MPI Isend is a NON blocking operation: when 
function returns BUFFmay be still unsent and can 
NOT be safely reused.



MPI Ireceive

MPI_Irecv( BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

REQUEST); /* to check status */

MPI Irecv is a NON blocking operation: when 
function returns BUFFmay not contain payload 
data from a message matching TAG.



MPI Test&Wait

• Used to check status of non blocking 
operations like MPI_Isend and MPI_Irecv

• MPI_Wait(&request, &status);

– Returns when request is completed
– status variable as in MPI_Recv

• MPI_Test(&request, &flag, 
&status);

– int flag matches true if request succeeded



MPI Others

• MPI_Barrier(COMMUNICATOR)
– All processes in COMMUNICATOR must reach barrier before 

proceeding
• MPI_Reduce (&var, &res, size, MPI_TYPE, 

MPI_OP, proc_id, MPI_COMMUNICATOR );
− var is the input value in each processor
− res is the variable containing the result in proc_id processor
− size is the size of the buffer
− MPI_OP identify the operation (e.g., MPI_SUM)

• MPI_Bcast(BUF, SIZE, TYPE, ROOT_ID, COMM)
– Broadcast the content of BUFfrom ROOT_IDto all COMM



Compiling MPI

� mpiCC is a front end to gcc compiler
� Same options as gcc apply to mpiCC

� To run an MPI program
– mpirun –nprocs <n> programname

– mpirun –nprocs <n> -machinefile
-file progname

– machinefile containes the names of 
computing nodes to use



Hello world

• Write an “Hello world I’m process # of # 
processes” in MPI



Hello world: MPI

#include <cstdio>
#include <mpi.h>

int main(int argc, char** argv)
{

int id, nprocs;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

printf("Hello from process %u of %u\n", id, nprocs);

MPI_Finalize();
return 0;

}



String Matching

• Count the number of occurrences of a 
pattern in a (random) text
– MPI
– TBB
– OpenMP

• In MPI text is distributed across the 
processes and the pattern is known to 
everyone



MPI: String Matching 1/4

MPI_Init(&argc, &argv);
int N=atoi(argv[1]);
int P;
MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

std::vector<char> V(N);
//Initialize data.
int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);

std::for_each(V.begin(), V.end(), init(pid));

std::string S(argv[2]);
int M=S.length();

•



MPI: String Matching 2/4
//Count matches on local data.
int cnt=0;
for (int i=0; i <= N-M+1; ++i) {

bool match = true;
for (int j=0; j < M; ++j) {

if (V[i+j] != S[j])
match = false;

}
if (match) ++cnt;

}



MPI: String Matching 3/4
if (pid>0) {

MPI_Send((&V[0]), M-1, MPI_CHAR, pid-1, 1, 
MPI_COMM_WORLD);

}
if (pid<P-1) {

std::vector<char> BUFF(2*(M-1));
std::copy(V.begin()+N-M+1, V.end(), BUFF.begin());
MPI_Status status;
MPI_Recv( &BUFF[M-1], M-1, MPI_CHAR, pid+1, 1, 

MPI_COMM_WORLD, &status );
for (int i=0; i <= M-1; ++i) {

bool match=true;
for (int j=0; j < M; ++j) {

if (BUFF[i+j]!=S[j])
match=false;

}
if (match) ++cnt;

}
}

•



MPI: String Matching 4/4
double match_time = match_timer.stop();

reduce_timer.start();

int res;
MPI_Reduce ( &cnt, &res, 1, MPI_INT, MPI_SUM, 0, 
MPI_COMM_WORLD );

MPI_Finalize();
if (pid==0) {

printf("RESULT ====>    %d\n",res);
printf("Overall %f Initialize %f Match %f Reduce 

%f\n",
overall_time, init_time, match_time, 

reduce_time);
}

return 0;



PI Example

• Compute Pi with a Monte Carlo simulation
• Generate N random points in the unit square
• Count how many falls in the unit circle: M
• 4* M / N = Pi



MPI: Pi 1/3

MPI_Init(&argc, &argv);

int N=atoi(argv[1]);
int P;

MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);

srand48(pid);



MPI: Pi 2/3
int cnt(0);

for (int i=0; i<N; ++i) {
double xcoord = drand48();
double ycoord = drand48();

double dist = std::sqrt(std::pow(xcoord, 2.0) +  
std::pow(ycoord, 2.0));

if (dist < 1.0)
++cnt;

}
//Collect the number of matches from all processes.
int res;
MPI_Reduce ( &cnt, &res, 1, MPI_INT, MPI_SUM, 0, 
MPI_COMM_WORLD );

if (pid==0) {
double pi = 4*(res/(double)(N*P));
printf("RESULT ====>    %f\n",pi);

}



Matrix Multiplication

• Implement a dense matrix multiplication 
algorithm in
− TBB

− OpenMP
− MPI

• C += A*B, A is NxL, B is LxM, C is NxM
• Input are three integers: N,L,M
• Initialize matrices and perform 

computation checking correctness



Basic sequential loop

void SMM(float A[][SIZEZ], 

float B[][SIZEZ], 

float C[][SIZEZ], 

size_t Arows, size_t Acols , size_t Bcols) {

for ( size_t i=0; i<Arows; ++i ) {

for ( size_t j=0; j<Bcols; ++j ) {

for ( size_t k=0; k<Acols; ++k ) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

} TRY SWAPPING THE TWO INNER 
LOOPS AND MEASURE TIME – with 
optimizations on



MPI version

• Each Processor holds N/P rows of A and 
C, and M/P columns of B

• Eash processor computes A*B (on its 
portion)

• Then sends B to the previous *or next) 
processor

• Repeat for P times
• Assume P divides N, L, and M



MPI matrix multiplication
MPI_Init(&argc, &argv);
const size_t Arows=SIZEZ, Acols=SIZEZ, Bcols=SIZEZ;
int P;    MPI_Comm_size(MPI_COMM_WORLD, &P);
int pid;  MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Status status;
MPI_Request r;
// Each processor has Arows/P rows of A and all of B, C 

stored like A
float *A = new float[SIZEZ*SIZEZ/P];
float *B = new float[SIZEZ*SIZEZ/P];
float *tmp = new float[SIZEZ*SIZEZ/P];
float *C = new float[SIZEZ*SIZEZ/P];

CreateData(A, B, pid, Arows/P, Acols, Bcols/P);
InitC(C0,Arows,Bcols/P);



Parallel visualization 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 14, 2011 
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!! Parallel Rendering 

!! IceT 

!! Performance study 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering 

!! IceT 

!! Performance study 



Data Parallel Pipelines 

!! Duplicate pipelines run independently on 
different partitions of data. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Duplicate pipelines run independently on 
different partitions of data. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Some operations will work regardless. 

!!Example: Clipping. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Some operations will work regardless. 

!!Example: Clipping. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Some operations will work regardless. 

!!Example: Clipping. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Some operations will have problems. 

!!Example: External Faces 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Some operations will have problems. 

!!Example: External Faces 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Ghost cells can solve most of these problems. 

Slide courtesy of Ken Moreland, Sandia Lab 



Data Parallel Pipelines 

!! Ghost cells can solve most of these problems. 

Slide courtesy of Ken Moreland, Sandia Lab 



Parallelization covers data input, data processing, and 

rendering. 

!! Identical data flow networks 
on each processor. 

!!Networks differentiated by 
portion of data they operate 
on. 

!!“Scattered/gather” 

"!No distribution (i.e. scatter), 

because scatter is done with 

choice of what data to read. 

"!Gather: done when rendering 

P1! P2! P3!P0!I/O!

Parallel!

Simulation!

Code!
P0!

P1!

P3!

P2!

Data Input 

Parallelized!

Server!

Proc 0 Proc 1 Proc 2 

Data 

Processing 

Rendering 



Parallel rendering (basic “sort last” version) 

!! Parallel rendering 

!!Every processor renders 
local geometry 

!!Z-buffer is used to 
compare depth of images 

!!Communication between 
processor for final image 

!! Harder: 

!!Shadows, transparency, 
ray-casting 

!! More on this topic later… 

Proc. 0’s image 

Proc. 1’s image 

Final composited 

image (done w/ z-
buffer) 

Scalable rendering 



The standard architecture for data flow network-based tools. 

!! Observations: 

!!Good for remote visualization 

!! Leverages available resources 

!! Scales well 

!!No need to move data 

remote machine 

Parallel vis resources 

User 

data 

localhost 

Graphics 

Hardware 
UI 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering 

!! IceT 

!! Performance study 



Data flow networks: observations 

!! Source for managing flow of data is small and in one 
place 

!! Majority of code investment is in algorithms (derived 
types of filters), not in base classes (which manage 
data flow). 

Algorithms don’t care about data 

processing paradigm … they only care 
about operating on inputs and outputs. 



Example filter: contouring 

Contour algorithm 

Contour filter 

Mesh input Surface/line output 

Data Reader Contour Filter Rendering 

{ 



Example filter: contouring  
     with data subsetting 

Contour algorithm 

Contour filter 

Mesh input Surface/line output 

Data Reader Contour Filter Rendering 

{ 

Communicate 

with executive to 
discard domains 



Example filter: contouring  
      with out-of-core 

Contour algorithm 

Contour filter 

Mesh input Surface/line output 

Data Reader Contour Filter Rendering 

{ 

1 2 3 

4 5 6 

7 8 9 

10 11 12 

1 2 3 

4 5 6 

7 8 9 

10 11 12 

Algorithm called 

12 times 



Example filter: contouring  
     with multi-resolution techniques 

Contour algorithm 

Contour filter 

Mesh input Surface/line output 

Data Reader Contour Filter Rendering 

{ 



Simulation code 

Example filter: contouring 
     with in situ 

Contour algorithm 

Contour filter 

Mesh input Surface/line output 

Data Reader Contour Filter Rendering 

{ 
X 



How Petascale Changes the Rules 

!! We can’t use pure parallelism alone any more 

!! We will need many techniques to work in many 
processing paradigms 

!! Data flow networks are a good fit: write algorithm 
once, use anywhere 

!!Only core infrastructure has to worry about the 
processing paradigm 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering 

!! IceT 

!! Performance study 



Contracts are an extension to the                
standard data flow network design. 

!! Work is performed by a pipeline 

!! A pipeline consists of data 

objects and components (sources, 
filters, and sinks) 

File Reader 

(Source) 

Slice Filter 

Contour 

Filter 

Renderer 

(Sink) 

V0 

V1 

V2 

Exec 

U
p
d
a
te

 

E
x
e
c
u
te

 

Data Flow Networks “101”: 

Extension: #! Contracts are coupled with 
the Update phase 

#! Pipeline execution begins 
with a “pull”, which starts 
Update phase 

#! Data flows from component 
to component during the 
Execute phase 
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Initial observations about contracts. 

!! A contract is simply a data structure 

!!The members of the data structure reflect the optimizations 

!! Optimizations are adaptively applied based on the final contract 

!! Each component describes its impact on the pipeline 

!!Allows for effective management of hundreds of components 

!!Allows for new, unforeseen components to be added 

!! Combining contracts with the Update phase 

$!seamlessly integrated into data flow networks 

$every component has a chance to modify the contract 
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Why are contracts important? 

•! Contracts are important for managing which 
optimizations can be utilized in a richly featured 
system 

•! We will look at the impact of these optimizations 
to better understand their importance. 



Operating on Optimal Subset of 
Data 

… 

Slice Filter 

V(I) 

… 

V(I+1) 

Filter 

(base class) 

(inheritance) 

Slice Filter 
Hundreds  

of others 

Contract *!

SliceFilter::ModifyContract!

         (Contract *V(I))!

{!

     ...!

     return V(I+1);!

}!



Operating on Optimal Subset of 
Data 

… 

Slice Filter 

V(I) 

… 

V(I+1) 

Filter 

(base class) 

(inheritance) 

Slice Filter 
Hundreds  

of others 

Contract *!

SliceFilter::ModifyContract!

         (Contract *V(I))!

{!

     ...!

     return V(I+1);!

}!

1)! Get meta-data 

2)! Determine domains 

that intersect slice 
3)! Restrict list of 

domains to process 

in V(I+1) 



Operating on Optimal Subset of 
Data 

… 

Slice Filter 

V(I) 

… 

V(I+1) 

1)! Get meta-data 

2)! Determine domains 

that intersect slice 
3)! Restrict list of 

domains to process 

in V(I+1) 
D3 D2 D1 D0 

D3 D2 D1 D0 



The contract-based system provides 
high flexibility for this optimization. 

… 

Spherical 

Slice Filter 

V(I) 

… 

V(I+1) 

A new, plugin filter can use 

this optimization without any 
modification to system 

… 

Slice Filter 

V(J) 

… 

V(J+1) 

… 

Contour 

 Filter 

V(I+1) 

V(I) 

… 

… 

Multiple filters can use 

the same optimizations 
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We studied performance using a 
simulation of a Rayleigh-Taylor 
Instability. 

!! RTI: heavy and light fluids mixing 

!!1.5B elements 

!!729 domains 

!! LLNL’s thunder 

!!Top 500’s #7 

(We only got a little bit of it) 

!!1.4GHz Intel Itanium2 
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We studied performance using a 
simulation of a Rayleigh-Taylor 
Instability. 

!! RTI: heavy and light fluids mixing 

!!1.5B elements 

!!729 domains 

!! LLNL’s thunder 

!!Top 500’s #7 

(We only got a little bit of it) 

!!1.4GHz Intel Itanium2 

The techniques shown are not new 

The performance increase motivates the 

importance of optimizations 

This, in turn, motivates the importance of contracts 
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Processing only the necessary domains 
is a lucrative optimization. 

Algorithm" Processors" Without    
Contracts"

With     
Contracts"

Speedup"

Contouring 

(early)"
32" 41.1s" 5.8s" 7.1X"

Contouring 

(late)"
32" 185.0s" 97.2s" 1.9X"

Slicing" 32" 25.3s" 3.2s" 7.9X"
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What is the right technique for distributing 
domains across processors? 

!! Two ways: 

!!Statically: make assignments before Execute phase 

!!Dynamically: adaptively during Execute phase 

!! Performance: 

!!Static: good chance of load imbalance 

"!As fast as slowest processor 

!!Dynamic: adaptively balancing load 

"!Obtains near optimal parallel efficiency  

!! Communication: 

!!Static: collective communication okay 

!!Dynamic: no collective communication 
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Contracts steer what load balancing 
technique we use.  
!! What load balancing technique should we use? 

!! If we need collective communication $ static 

!! Otherwise, we want performance $ dynamic 

!! Contracts enable this 

!!During Update phase: 

"!Every filter can modify the contract to state whether or not it 

needs collective communication 

!!Before Execute phase: 

"!Executive examines contract and decides which load balancing 
technique to use. 
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Employing dynamic load balancing           
is a lucrative optimization. 

Algorithm*"
Processors" Static 

Load 
Balancing"

Dynamic 
Load 

Balancing"

Speedup"

Slicing" 32" 3.2s" 4.0s" 0.8X"

Contouring" 32" 97.2s" 65.1s" 1.5X"

Thresholding" 64" 181.3s" 64.1s" 2.8X"

Clipping" 64" 59.0s" 30.7s" 1.9X"

* = All of these operations 

have no collective 

communication   
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Artifacts occur along the                     
boundaries of domains. 

!! Looking at external faces 

!! Faces external to a domain can be 
internal to the data set 

$ many extra, unneeded faces 

$ wrong picture with transparency 
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Artifacts occur along the                     
boundaries of domains. 

!! Looking at external faces 

!! Faces external to a domain can be 
internal to the data set 

$ many extra, unneeded faces 

$ wrong picture with transparency 

Solution: mark 

unwanted faces 

as “ghost” 
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Artifacts occur along the                     
boundaries of domains. 

#! Interpolation 

•! Inconsistent values at 

nodes along boundary 

$ broken contour 

surfaces 
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Artifacts occur along the                     
boundaries of domains. 

#! Interpolation 

•! Inconsistent values at 

nodes along boundary 

$ broken contour 

surfaces Solution: make 

redundant layer of 

“ghost” elements 
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Ghost data fixes artifacts                             
along domain boundaries. 

!! Solution: generate ghost data on the fly 

!! Through contracts, system determines necessary type 
of ghost data 

!! There are different costs for ghost data: 

!!Ghost faces:       memory 

!!Ghost elements: memory, collective communication 
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Ghost data fixes artifacts                             
along domain boundaries. 

!! Solution: generate ghost data on the fly 

!! Through contracts, system determines necessary type 
of ghost data 

!! There are different costs for ghost data: 

!!Ghost faces:       memory 

!!Ghost elements: memory, collective communication 

Always get the right picture, 

and do it with the minimum cost 
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Contracts are a simple idea                        
that have a large impact. 

!! Contracts: 

!!Just a data structure 

!!Describe what impact a 
component has on the 
pipeline 

Name" Type" Default Value"

domains" vector<bool>" all true"

hasColl-"

Commun."

bool" false"

ghostType" enum {None, 

Face, Element}"

None"

much more…" …" …"

#! Contracts enable us to avoid the following  “dumb” (conservative) strategies: 

•! Read all data 

•! Always assume collective communication 

•! Always create ghost elements 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering % courtesy Ken Moreland 

!! IceT 

!! Performance study 



The Graphics Pipeline 

Points Lines Polygons 

Rendering Hardware 

Geometric Processing 

Translation 
Lighting 

Clipping 

Rasterization 

Polygon Filling 
Interpolation 

Texture Application 
Hidden Surface Removal 

Frame Buffer 

Display 



FB 

FB 

FB 

FB 

Parallel Graphics Pipelines 

G R 

G R 

G R 

G R 
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Sort Middle Parallel Rendering 
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FB FB 

FB FB 

Sort First Parallel Rendering 

G R 
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FB 

Sort Last Parallel Rendering 

G R 

G R 

G R 
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Sort-First Bottleneck 

Renderer 

Renderer 

Renderer 

Renderer 

Polygon 

Sorter 

Polygon 

Sorter 

Polygon 

Sorter 

Polygon 

Sorter 

Network 



Sort-Last Bottleneck 

Compositio

n Network 

Rendere

r 

Rendere

r 

Rendere

r 

Rendere

r 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering 

!! IceT % courtesy Ken Moreland! 

!! Performance study 



IceT: parallel rendering library 

!! IceT = Image Compositing Engine for Tiles 

!! Developed and maintained by Sandia Nat’l Lab. 

!! Popular library, used by VisIt and ParaView 

!! Used most often for non-tiled displays. 

!!Heavily optimized 

"! “Active pixels” 

!!Employs multiple strategies based on user settings, 
problem setup 

!! http://icet.sandia.gov/ 



Image Composition Engine for 
Tiles (ICE-T) 

!! Render/compose individual tiles. 

!! Take advantage of spatial decomposition. 

!!Throw away blank images. 

!!Build “virtual” composition networks. 

!! Challenge: perform all compositions in parallel 
and maintain good load balancing. 

1 

2 

1 

1 

2 

1 1 

2 



Example: 6 Nodes, 2 Tiles 



Serial Strategy 



Virtual Trees Strategy 



Tile Split and Delegate Strategy 

3 Images 

6 Images 

Assign 

Processor

s 1, 2 

Assign 

Processor

s 3, 4, 5, 6 

1 
3 

2 

4 

5 

6 



Tile Split and Delegate Strategy 

3 

4 

5 

6 

1 

2 



Reduce to Single Tile Strategy 



Bucketing 

Using buckets to reduce number of polygons re-rendered. 



Floating Viewport 

Object fits within a tile, but is translated so that it straddles up to four 

tiles. 



Floating Viewport 

Rather than render four times, render once in a viewport that completely 

contains the object. 



Floating Viewport 

Break the image into four pieces and pad each piece to form an image 

for each tile. 



Active Pixel Encoding 

!! Record run lengths of “active” pixels and “inactive” 
pixels. 

!! Throw away data for “inactive” pixels. 

!! Fast encoding. 

!!Three operations per pixel. 

!! Free decoding.  Faster depth compare. 

!! Effective compression. 

!!Encoded 1/5 full image at beginning. 

!! Good worst case behavior. 

!!Encoded image can only grow a few bytes. 



Active Pixel Encoding, Worst Case 

Color Data 

Depth Data 

Run Length 

Active   Inactive 

Original Data 

Encoded Data 

Original Data 

Encoded Data 



Test Data Distributions 

Linear 

Distribution 

Perfect 

Separation 

469 Mtri 

Isosurface* 

Gaussian 

Distribution 

*Image covered by Lawrence Livermore National Laboratories: UCRL-MI-142527 Rev 1 



Experimental Results 



IceT: Conclusions 

!! Pluses 

!! Renders extremely large sets 
of polygons at fast rates. 

!! Good performance on tile 
displays. 

!! Runs on clusters ($$$). 

!! Good scalability. 

!! Maintains good load 
balancing with unstructured 
data. 

!! Minuses 

!! Slow frame rates. 

"! Large constant overhead. 

"! Frame buffer read back a 
huge bottleneck. 

!! Requires multi-pass rendering. 

!! Relies on spatial 
decomposition for good 
performance. 



Outline 

!! Parallel visualization basics 

!! Smart techniques and data flow 

!! Contracts 

!! Parallel Rendering 

!! IceT 

!! Performance study 



Pure parallelism and tomorrow’s 
data 

!! Research questions: 

!! Is it possible/feasible to run production-quality 
visual data analysis s/w on large machines and on 
large data sets? 
"! Are the tools we use right now ready for tomorrow’s data? 

!!What obstacles/bottlenecks do we encounter at 
massive data? 



Experiment methodology 

!! Preprocess step: generate large 
data set 

!! Read it 

!! Contour 

!! Render @ 1024x1024 

!! Synthetic data: 

!! Wanted to look at tomorrow’s data; 
not available yet 

!! Synthetic data should be reasonable 
surrogate for real data. Visualization of 1 trillion 

cells, visualized with VisIt 
on Franklin using 16,000 cores. 



Experiment methodology, 
continued 

!! Only used pure parallelism 

!!This experiment was about testing the limits of pure 
parallelism 

!!Purposely did not use in situ, multi-resolution, out-of-
core, data subsetting 

!! Pure parallelism is what the production visualization 
tools use right now (*). 



Volume rendering 

!! Ran into problems with volume 
rendering. 

!! Problem eventually fixed, but 
not in time for study 

!! Runs on these big machines are 
opportunistic and it’s hard to get a 
second chance 

!! Approximately five seconds per 
render 

!! Contouring exercises much of the 
infrastructure (read, process, 
render) Visualization of 2 trillion 

cells, visualized with VisIt 
on JaguarPF using 32,000 cores. 



Experiment methodology, continued 

!! Three basic variations 

!!Vary over supercomputing environment 

!!Vary over data generation 

!!Vary over I/O pattern 



Varying over supercomputer 
environment 

!! Goals: 

!!Ensure results aren’t tied to a single machine. 

!!Understand differences from different architectures. 

!! Experiment details 

!!1 trillion cells per 16,000 cores 

!!10*NCores “Brick-of-float” files, gzipped 

!!Upsampled data 



7-10 network links failed, had to be 

statically re-routed 

BG/L has 850MHz clock speed 

Lustre striping of 2 versus Lustre striping 

of 4 



Varying over data generation 
pattern 

!! Concern: does 
upsampling produce 
unrepresentatively 
smooth surfaces? 

!! Alternative: replication 

Visualization of 1 trillion 

cells, visualized with VisIt on 
Franklin using 16,000 cores. 



Results from data generation test 

!! Test on franklin, using 16,000 cores with unzipped 
data 

Contouring time is the same because case 

where a triangle is generated is rare. 

Rendering time is different because 

replicated pattern has more geometry. 



Varying over I/O pattern 

!! Previous tests: uncoordinated I/O, doing 10 
“fread”s per core. 

!! Can collective communication help? 

Franklin I/O maximum: 12GB/s 



Pitfalls at scale 

!! Volume renderin 

!! Startup time 

!!Loading plugins overwhelmed file system 

!!Took ~5 minutes 

!!Solution #1: Read plugin information on MPI task 0 and 
broadcast.  (90% speedup) 

!!Solution #2: static linking 

"!Still need to demonstrate at scale 



Pitfalls at scale #2: All to one 
communication 

!! Each MPI task needs to report high level information 

!!Was there an error in execution for that task? 

!!Data extents?  Spatial Extents? 

!! Previous implementation: 

!!Every MPI task sends a direct message to MPI task 0. 

!! New implementation (Miller, LLNL): 

!!Tree communication 



Pitfalls at scale #3: reproducible 
results 

Repeated debugging runs at scale are critical 

to resolving issues like these. 



Conclusions 

!! Pure parallelism works, but is only as good as the 
underlying I/O infrastructure 

!!and the I/O future looks grim 

!! Full results available in                               
special issue of Computer                       
Graphics & Applications on                    
Ultrascale Visualization. 



Non-embarrassingly Parallel Algorithms 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011 



Outline   

!! Volume rendering 

!! Particle advection 

!! Connected components & line scans 



Outline   

!! Volume rendering 

!! Particle advection 

!! Connected components & line scans 
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Algorithm Studied: 

Raycasting VR 
!! Overview of Levoy’s method 

!!For each pixel in image plane: 

"!Find intersection of ray and volume 

"!Sample data (RGBa) along ray, 
integrate samples to compute final 

image pixel color 
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Parallelizing Volume 

Rendering 
!! Image-space decomposition. 

!!Each process works on a disjoint subset of the final image (in 

parallel) 

!!Processes may access source voxels more than once, will 

access a given output pixel only once. 

!!Great for shared memory parallelism. 

!! Object-space decomposition. 

!!Each process works on a disjoint subset          of the input 

data (in parallel). 

!!Processes may access output pixels more than once.  

!!Output requires image composition (ordering semantics). 



Parallel volume rendering pitfalls 

!! Both work-decomposition schemes suffer from load 
balance issues: 

!!Object-space: what if some processor’s portion of the 
data set dominates the view frustum? 

!! Image-space: what if some processor’s portion of the 
view frustum contains a large fraction of the data set? 

!! Object-space pitfall: what if the blocks can not be 
ordered properly? 



Volume rendering pitfalls 

!! Image-space decomposition: 

!!Load balance issue: what if some processor’s portion of 

the view frustum contains a large fraction of the data 

set?  

Image (side view) 

Proc 0’s pixels 

Proc 1’s pixels 

Proc 2’s pixels 

Proc 3’s pixels 

Proc 4’s pixels 

Proc 5’s pixels 

1M cells 

1M cells 

20M cells 

1M cells 

1M cells 

1M cells 

This assumes an a priori 

decomposition of pixels. 

Dynamic decomposition of 

pixels entails an entirely 

different set of problems. 



Parallel volume rendering pitfalls 

!! Image-space decomposition: 

!!Performance issue: list of cells to consider changes 

every render. 

!!Solutions: 

"!Go to disk? 

"! (probably bad) 

"!Data redistribution amongst processors? 

"! Could work, but load balance issues from last slide are still in 

play… 

Image-space decomposition is well suited for shared memory 

parallelism.  Load balance becomes easy since pixels can be 

dynamically assigned and every processor can access every cell.  



Parallel volume rendering pitfalls 

!! Object-space decomposition: 

!!Load balance issue: what if some processor’s portion of 

the view frustum contains a large fraction of the data 

set?  

P0 

P1 P2 P3 P5 P4 



Parallel volume rendering pitfalls 

!! Object-space decomposition: 

!!Load balance issue: what if some processor’s portion of 

the view frustum contains a large fraction of the data 

set?  

P0 

P1 P2 P3 P5 P4 



Parallel volume rendering pitfalls 

!! Object-space decomposition: 

!!Applicability issue: what if there is no possible ordering 

of sub-images? 

P0 

P1 

P0 

P1 

OK Not OK 



Hybrid Volume Rendering 

!! Hybrid volume rendering: 

!!Refers to mixture of object- and image-order 

techniques to do volume rendering. 

!!Most contemporary parallel volume rendering projects 

are hybrid volume renderers: 

"!Object order – divide data into disjoint chunks, each 
processor works on its chunk of data. 

"! Image order – parallel compositing algorithm divides work 
over final image, each composites over its portion of the 

final image. 

"!A two-stage algorithm, heavy communication load between 
stages. 



Hybrid Volume Rendering 

!! Hybrid volume rendering: 

!!Dual partition scheme: 
"! Over data 

"! Over pixels 

P0!

P1!

P3!

P2!

P8!
P7! P6!

P5!

P4!

P9!

P0 
P0 
P1 

P9 
P9 

P1 

Data must be sent to P0 

Data OK Data must 

be sent to P1 



Reconsidering pitfalls 

!! Image-space decomposition: 

!!Load balance issue: what if some processor’s portion of 

the view frustum contains a large fraction of the data 

set?  

Image (side view) 

Proc 0’s pixels 

Proc 1’s pixels 

Proc 2’s pixels 

Proc 3’s pixels 

Proc 4’s pixels 

Proc 5’s pixels 

1M cells 

1M cells 

20M cells 

1M cells 

1M cells 

1M cells 

Non-issue for hybrid 

parallel … all pixels have 

approximately the same 

amount of data. 



Reconsidering pitfalls 

!! Image-space decomposition: 

!!Performance issue: list of cells to consider changes 

every render. 

!!Solutions: 

"!Go to disk? 

"! (probably bad) 

"!Data redistribution amongst processors? 

"! Could work, but load balance issues from last slide are still in 

play… 

Not an issue for hybrid volume rendering … cell list is the same for 

every view. 



Parallel volume rendering pitfalls 

!! Object-space decomposition: 

!!Applicability issue: what if there is no possible ordering 

of sub-images? 

P0 

P1 

P0 

P1 

OK Not OK 
Not an issue for hybrid volume rendering … data can be ordered as it 

is composited. 



Parallel volume rendering pitfalls 

!! Object-space decomposition: 

!!Load balance issue: what if some processor’s portion of 

the view frustum contains a large fraction of the data 

set?  

P0 

P1 P2 P3 P5 P4 

This one still is a problem for hybrid parallel volume rendering. 



Optimization: only sample “small” cells in first phase. 

!! Small-element sampling stage: 

!! Parallelizes over object decomposition 

!! Samples small elements, defers large 
elements 

!! Outputs partially populated (G, F), plus 
untouched large elements 

!! Communication stage 

!! Large all-to-all communication to go from 
object to image decomposition 

!! Large-element sampling stage: 

!! Parallelizes over image decomposition 

!! Samples large elements, but only the portions 
within portion of image-space 

!! Each processor outputs fully populated (G, F) 
for its portion of image space 

Mesh-based input 

Image output 

Small-element 

 sampling stage 

Communication stage 

Large-element 

Sampling stage 

Classification &  

Composite 

Image 

Collection 

Sampling 

phase 

Comp- 

ositing 
phase 
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This algorithm was demonstrated to be strongly 

scalable. 

!! Scaling study: 

!! 100M element unstructured grid, 1024x1024 pixel image 

!! Cluster of 2.4GHz Opterons, connected by InfiniBand 

!! Run within real world application (VisIt) 

!! Variations: 

"! 3D rasterization versus Kernel-based sampling 

"! Camera inside data set versus outside data set 

Procs 3D Rast. /  

outside 

3D Rast. / 

Inside 

Kernel / 

Outside 

Kernel / 

inside 

25 12.0s 21.9s 12.1s 63.7s 

50 5.8s 12.1s 5.8s 30.5s 

100 3.0s 7.0s 3.1s 15.3s 

200 1.6s 3.6s 1.3s 7.6s 

400 0.9s 2.1s 0.7s 4.1s 



Outline   

!! Volume rendering 

!! Particle advection 

!!Motivating more than streamlines 

!!Parallelization 

!! Connected components 

!! Line scans 



Particle advection basics 

•! Advecting particles create integral curves 

•! Streamlines: display particle path 

(instantaneous velocities) 

•! Pathlines: display particle path (velocity 
field evolves as particle moves)  



“The Fish Tank” 

“Simulation of the 

Turbulent Flow of 

Coolant in an 

Advanced 

Recycling Nuclear 

Reactor.” Movie 

credits to Childs, 

Fischer, Obabko, 

Pointer, and Siegel 



Particles Moving Through the “Fish 

Tank” 

Courtesy Garth & Childs 



Courtesy Garth & Childs 



Courtesy Garth & Childs 



Courtesy Garth & Childs 



Courtesy Garth & Childs 



Sets of Streamlines 

!! Visualizing all integral curves… 

!!… starting from a seed curve: 

Stream Surface or Path Surface 

Courtesy Garth 



Sets of Streamlines 

!! Stream surface computation: 

•! Skeleton from Integral Curves +  Timelines 

Courtesy Garth 



Sets of Streamlines 

!! Stream surface computation: 

•! Skeleton from Integral Curves + Timelines 

•! Triangulation 

Generation of Accurate Integral Surfaces in Time-Dependent Vector Fields. C. Garth, H. Krishnan, X. 
Tricoche, T. Bobach, K. I. Joy. In IEEE TVCG, 14(6):1404–1411, 2007 

Courtesy Garth 



Sets of Streamlines 

!! Visualizing all integral curves… 

!!… starting from a seed curve: 

Stream Surface or Path Surface 

Courtesy Garth 



Sets of Streamlines 

!! Stream surface examples 

Courtesy Garth 



Courtesy Garth 



Lagrangian Methods 

!! Visualize manifolds of maximal stretching in a flow, 

as indicated by dense particles 

!! Finite-Time Lyapunov Exponent (FTLE) 

Courtesy Garth 



www.vacet.org 

Lagrangian Methods 

!! Visualize manifolds of maximal stretching in a flow, 

as indicated by dense particles 

!!Forward in time:      indicates divergence 

!!Backward in time:  indicates convergence 

Courtesy Garth 



Outline   

!! Volume rendering 

!! Particle advection 

!!Motivating more than streamlines 

!!Parallelization 

!! Connected components & line scans 



Supercomputers are generating large data sets that 

often require parallelized postprocessing.  

217 pin reactor cooling simulation. 

Nek5000 simulation on ! of Argonne BG/P. 

Image credit: Paul Fischer using VisIt 

1 billion element unstructured 

mesh 



Communication between “channels” 

are a key factor in effective cooling. 



Particle advection can be used to 

study communication properties. 



This sort of analysis requires many 

particles to be statistically significant. 

Place thousands of particles !
in one channel!

Observe which channels the!
 particles pass through!

Observe where particles come out !
(compare with experimental data) !

How can we parallelize 

this process? 

Repeat for other channels 



Particle advection: 

Four dimensions of complexity 

Data set size 

vs 

Seed set distribution 

vs 

Seed set size 

vs 

Vector field complexity 



Do we need parallel processing?  

When?  How complex? 

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"



Parallelization for small data and a 

large number of particles. 

Read Advect Render 

Processor 1 

Read Advect Render 

Processor 2 

Read Advect Render 

Processor 0 

Parallelized visualization 

data flow network 

File!

Simulation 

code 

GPU-accelerated approaches 

follow a variant of this model. 

The key is that the data is small 

enough that it can fit in memory. 

This scheme is referred to as 

parallelizing-over-particles. 



Parallelization for small data and a 

large number of particles. 

Read Advect Render 

Processor 1 

Read Advect Render 

Processor 2 

Read Advect Render 

Processor 0 

Parallelized visualization 

data flow network 

File!

Simulation 

code 



Do we need advanced 

parallelization techniques?  When? 

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"

!!Need to parallelize, but embarrassingly parallel 
OK"

!! Large ##s of particles + large data set sizes"



Parallelization for large data with 

good “distribution”. 

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of 

data 

(on disk) 

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code 

Read Advect Render 

Processor 1 

Read Advect Render 

Processor 2 

Read Advect Render 

Processor 0 

Parallelized visualization 

data flow network 

This scheme is referred to as 

parallelizing-over-data. 



Do we need advanced 

parallelization techniques?  When? 

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"

!!Need to parallelize, but embarrassingly parallel 
OK"

!! Large ##s of particles + large data set sizes"

!!Need to parallelize, simple schemes may be OK"

!! Large ##s of particles + large data set sizes +                 

(bad distribution OR complex vector field)"

!!Need smart algorithm for parallelization"



Parallelization with big data & 

lots of seed points & bad 

distribution 
#! Two extremes: 

•! Partition data over processors and pass 
particles amongst processors 

!! Parallel inefficiency! 

•! Partition seed points over processors and 
process necessary data for advection 

!! Redundant I/O! 

Notional streamline 

example 

P0 P0 P0 P0 P0 

P1 P1 P1 P1 P1 

P2 P2 P2 P2 P2 

P3 P3 P3 P3 P3 

P4 P4 P4 P4 P4 

P0 

P1 

P2 
P3 

P4 

Parallelizing Over I/O Efficiency 

Data Good Bad 

Particles Bad Good 



Parallelization with big data & 

lots of seed points & bad 

distribution 
#! Two extremes: 

•! Partition data over processors and pass 
particles amongst processors 

!! Parallel inefficiency! 

•! Partition seed points over processors and 
process necessary data for advection 

!! Redundant I/O! 

Notional streamline 

example 

P0 P0 P0 P0 P0 

P1 P1 P1 P1 P1 

P2 P2 P2 P2 P2 

P3 P3 P3 P3 P3 

P4 P4 P4 P4 P4 

P0 

P1 

P2 
P3 

P4 

Parallelizing Over I/O Efficiency 

Data Good Bad 

Particles Bad Good 

Parallelize 

over particles 

Parallelize 

over data Hybrid algorithms 



The master-slave algorithm is an 

example of a hybrid technique. 

!! “Scalable Computation of Streamlines on Very 

Large Datasets”, Dave Pugmire, et al, SC09 
!! Many of the following slides compliments of Dave Pugmire. 

!! Algorithm adapts during runtime to avoid pitfalls of 
parallelize-over-data and parallelize-over-

particles. 
!! Nice property for production visualization tools. 

!! Implemented inside VisIt visualization and analysis 

package. 



Master-Slave Hybrid Algorithm 

•! Divide processors into groups of N 

•! Uniformly distribute seed points to each group 

Master: 

-! Monitor workload 
-! Make decisions to optimize resource 

utilization 

Slaves: 

-! Respond to commands from 
Master 

-! Report status when work 
complete 



Master Process Pseudocode 

Master() 

{ 

     while ( ! done ) 

     { 

          if ( NewStatusFromAnySlave() ) 

          { 

                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 

                      SendCommandToSlaves( cmd ) 

          } 

     } 

} 

What are the possible 

commands? 



Commands that can be issued by master 

Master Slave 

Slave is given a streamline that 

is contained in a block that is 

already loaded 

1. "Assign / Loaded Block 

2.!Assign / Unloaded Block 

3.!Handle OOB / Load 

4.!Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Slave is given a streamline 

and loads the block 

Commands that can be issued by master 

1.!Assign / Loaded Block 

2. "Assign / Unloaded Block 

3.!Handle OOB / Load 

4.!Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Load  

Slave is instructed to load a 

block. The streamline in that 

block can then be computed. 

Commands that can be issued by master 

1.!Assign / Loaded Block 

2.!Assign / Unloaded Block 

3. "Handle OOB / Load 

4.!Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Send     to J 

Slave J 

Slave is instructed to send a 

streamline to another slave that 

has loaded the block 

Commands that can be issued by master 

1.!Assign / Loaded Block 

2.!Assign / Unloaded Block 

3.!Handle OOB / Load 

4. "Handle OOB / Send 

OOB = out of bounds 



Master Process Pseudocode 

Master() 

{ 

     while ( ! done ) 

     { 

          if ( NewStatusFromAnySlave() ) 

          { 

                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 

                      SendCommandToSlaves( cmd ) 

          } 

     } 

} 
* See SC 09 paper 

for details 



Master-slave in action 

P0 
P0 

P1 

P1 
P2 

P2 
P3 

P4 

Iteration Action 

0 P0 reads B0, 

P3 reads B1 

1 P1 passes points 

to P0, 
P4 passes points 

to P3, 
P2 reads B0 

0: Read 

0: Read 

Notional streamline 

example 

1: Pass 

1: Pass 
1: Read 



Master-slave in action 

P0 
P0 

P1 

P1 
P2 

P2 
P3 

P4 

Iteration Action 

0 P0 reads B0, 

P3 reads B1 

1 P1 passes points 

to P0, 
P4 passes points 

to P3, 
P2 reads B0 

0: Read 

0: Read 

Notional streamline 

example 

1: Pass 

1: Pass 
1: Read 

-! When to pass and when to read? 

-! How to coordinate communication?  Status?  Efficiently? 



Algorithm Test Cases 

-!Core collapse supernova simulation 

-!Magnetic confinement fusion simulation 

-!Hydraulic flow simulation 



Particles Data Hybrid 

Workload distribution in supernova simulation 

Parallelization by: 

Colored by processor doing integration 



Workload distribution in parallelize-over-

particles 

Too much I/O 



Workload distribution in parallelize-over-data 

Starvation 



Workload distribution in hybrid algorithm 

Just right 



Comparison of workload distribution 



Astrophysics Test Case:  
Total time to compute 20,000 Streamlines 
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Non-uniform 

Seeding 

Data Part-

icles 

Hybrid 



Astrophysics Test Case:  
Number of blocks loaded 
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B
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c
k
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o
a
d
e
d
 

Number of procs Number of procs 

Data Part-

icles 
Hybrid 

Uniform 

Seeding 

Non-uniform 

Seeding 



Summary for Large Data and 

Parallelization 

!! The type of parallelization required will vary 

based on data set size, number of seeds, seed 

locations, and vector field complexity 

!! Parallelization may occur via parallelization-over-

data, parallelization-over-particles, or somewhere 

in between (master-slave).  Hybrid algorithms have 

the opportunity to de-emphasize the pitfalls of the 

traditional techniques. 

!! Note that I said nothing about time-varying data… 



Outline   

!! Volume rendering 

!! Particle advection 

!! Connected components & line scans 



Visualizing and Analyzing Large-Scale 

Turbulent Flow 
!! Detect, track, classify, and 

visualize features in large-scale 

turbulent flow. 

!! Analysis effort by Kelly Gaither 

(TACC), Hank Childs (LBNL), & 

more… 

!! Stresses two algorithms that are 

difficult in a distributed memory 

parallel setting: 

1.! Can we identify 

connected components? 

2.! Can we characterize their 

shape? 

VisIt calculated connected components on a 4K^3 turbulence data in parallel using TACC's Longhorn machine.  2 

million components were initially identified and then the map expression was used to select only the components that 

had total volume greater than 15.  Data courtesy of P.K. Yeung & and Diego Donzis 



Identifying connected components in 

parallel is difficult. 

!! Hard to do efficiently 

!! Tremendous 

bookkeeping problem. 

!! 4 stage algorithm that 

finds local connectivity 

and then merges 

globally. 



We used shape characterization to 

assist our feature tracking. 

72 

!! Shape characterization 

metric: chord length 

distribution 

!!Difficult to perform efficiently 

in a distributed memory 

setting 

P0!

P1!
P3!

P2!

Line Scan Filter 

1) Choose 

Lines 

2) Calculate 

Intersections 

3) Segment 

redistribution 

4) Analyze 

lines 

5) Collect 

results 

Line Scan Analysis Sink 



Hybrid Parallelism 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011 



Outline 

!! Overview of Hybrid Parallelism 

!! Examples 

!!Volume rendering 

!!Streamlines 



Outline 

!! Overview of Hybrid Parallelism 

!! Examples 

!!Volume rendering 

!!Streamlines 



History of Parallelism 

!! Mid 1970s-Early 1990s:  

!! Vector machines: Cray 1 ... NEC SX 

!! Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c. 

!! Early 1990s-present: 

!! The rise of the MPP based on the commodity microprocessor. 
Cray T3D, TM CM1, CM2, CM5, etc.  

!! Message Passing Interface (MPI) becomes the gold standard for 
building/running parallel codes on MPPs. 

!! Mid 2000s-present: 

!! Rise of the multi-core CPU, GPU. AMD Opteron, Intel Nehalem, 
Sony Cell BE, NVIDIA G80, etc. 

!! Large supercomputers comprised of lots of multi-core CPUs. 

!! Shared memory programming on a node: pthreads, OpenMP; 
data parallel languages (CUDA); global  shared memory 
languages (UPC) and utilities (CAF). 

"! Early 1990s-Early 2000s: 

"! Shared memory parallelism (e.g. SGI)  



Hybrid parallelism: MPI + ? 

!! Hybrid-parallelism blends distributed- and shared-
memory parallelism concepts. 

!!Use distributed memory techniques across nodes & 
shared memory techniques within a node. 

!! Distributed memory parallelism 

!!MPI is the gold standard 

!! Shared memory parallelism 

!!Pthreads 

!!OpenMP 

!!CUDA / OpenCL 

!!More… 



Pthreads = POSIX threads 

!! Pthreads: standard, portable library available with 
C programming on UNIX 

!! Thread = “independent stream of instructions that 
can be scheduled to run by the operating system” 

!! 4 major groups of subroutines in Pthreads API: 

!!Thread management, mutexes, condition variables, 
synchronization 

!! Threads created and destroyed dynamically 

!! Memory shared between the threads 

!! Each thread may execute a totally different 
subroutine. 



OpenMP = Open Multi-Processing 

!! OpenMP: shared-memory parallel programming in 
C/C++/Fortran on Unix, Windows NT, and more. 

!! Defined by a group of major computer hardware 
and software vendors. 

!! Portable, scalable model that gives shared-memory 
parallel programmers a simple and flexible 
interface. 

!! Realized through compiler directives. 

!! Follows a fork/join                                         
model. 



CUDA = Compute Unified Device 
Architecture 

!! Allows developers to 
program NVIDIA GPUs by 
giving them access to its 
virtual instruction set and 
memory of the parallel 
computational elements. 

!! Recursion-free, function-
pointer-free subset of the 
C language.  



OpenCL = Open Computing Language 

!! Developed by Apple, AMD, IBM, Intel, and Nvidia, 
and transferred to the Khronos Group. 

!! Programming is similar to CUDA, although widely 
regarded to be a less mature environment. 

!! Capable of supporting x86, Nvidia, and ATI cards. 



Hybrid Parallelism on Large, 
Multi-core Platforms 

!! Why hybrid parallelism? 

!!MPI-only approaches for parallel visualization may not 
work well in future: 100-1000 cores per node. 

!!Exascale machines will likely have O(1M) nodes 

!! Questions when considering hybrid parallelism: 

!!Will MPI-only work? 

!!Will hybrid work? 

!!Are there performance gains with hybrid?  Losses? 



Research in Hybrid Parallelism 

!! Caveats 
!! Relatively new research area, not a great deal of published 

work. 

!! Studies focus on “solvers,” not vis/graphics. 

!! State of hybrid parallel visualization: lots of work to do 

!! Fundamental questions: 
!!How to map algorithm onto a complex memory, 

communication hierarchy? 

!!What is the right balance of distributed- vs. shared-memory 
parallelism? How does balance impact performance? 



Research in Hybrid Parallelism 

!! Conclusions of these previous works: 
!!What is best? Answer: it depends. 

!!Many factors influence performance/scalability: 

"!Synchronization overhead. 

"!Load balance (intra- and inter-node). 

"!Communication overhead and patterns. 

"!Memory access patterns. 

"!Fixed costs of initialization. 

"!Number of runtime threads. 



Outline 

!! Overview of Hybrid Parallelism 

!! Examples 

!!Volume rendering 

!!Streamlines 



Hybrid Parallelism for Volume Rendering 
on Large, Multi-core Platforms 
!! Does hybrid-parallelism work for ray casted volume 

rendering at extreme concurrency?  If so, how well? 

!!Ask same questions the HPC folks do: 

"!How to map algorithm to hybrid parallel space? 

"!How does performance compare with MPI-only implementation? 

!! Study: 

!!Compare MPI-only, MPI+pthreads, MPI+OpenMP at 216K 
concurrency 

!! Results: 

!!Experiment to compare performance shows favorable 
characteristics of hybrid-parallel, especially at very high 
concurrency. 



Hybrid Parallelism Versus Hybrid 
Volume Rendering 

!! Hybrid volume rendering: 

!!Refers to mixture of object- and image-order 
techniques to do volume rendering. 

"!A two-stage algorithm, heavy communication load between 

stages. 

!! Hybrid parallelism: 

!!Refers to mixture of shared and distributed memory 
approaches. 

!! (We are doing both.) 



Hybrid Parallel Volume Rendering 

!! Our hybrid-parallel architecture: 

Shared memory parallel 

Distributed-memory parallel 
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Experiment Overview 

!! Thesis: hybrid-parallel will exhibit favorable 
performance, resource utilization characteristics 
compared to traditional approach. 

!! Strong scaling study: hold problem size constant, 
vary amount of resources. 

!!As we increase the number of procs/cores,                                   
each proc/core works on a smaller-sized problem. 

!!Time-to-solution should drop.  
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Experiment: Platform and Source 
Data 

!! Platform: JaguarPF, a Cray XT5 system at ORNL 

!!18,688 nodes, dual-socket, six-core AMD Opteron 
(224K cores) 

!! Source data: 

!!Combustion simulation results, hydrogen flame (data 
courtesy J. Bell, CCSE, LBNL) 

!!Effective AMR resolution: 10243, flattened to 5123, 

runtime upscaled to 46083 (to avoid I/O costs). 

!! Target image size: 46082 image.  

!!Want approx 1:1 voxels to pixels. 
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Experiment – The Unit Test 
!! Raycasting time: view/data dependent 

!!Execute from 10 different prescribed views:                   
forces with- and cross-grained memory access patterns. 

!!Execute 10 times, result is average of all. 

!! Compositing 

!!Five different ratios of compositing PEs to rendering PEs. 

!! How/what to measure? 

!!Memory footprint 

"! right after initialization. 

"! for data blocks and halo exchange 

!!Absolute runtime and scalability of raycasting and 
compositing  

!!All across a wide range of concurrencies. 
"!Remember: we’re concerned about what happens at extreme 

concurrency. 
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Absolute Runtime 

!! -hybrid outperforms –only at every concurrency 
level.  

!!At 216K-way parallel, -hybrid is more than twice as 
fast as –only. 

!!Compositing times begin to dominate: communication 
costs. 
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Scalability – Raycasting Phase 

!! Near linear scaling since no 
interprocess communication. 

!! -hybrid shows sublinear 
scaling due to oblong block 
shape. 

!! -only shows slightly better 
than linear due to reduced 
work caused by 
perspective foreshortening. 
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Scalability – Compositing  

!! How many compositors to use? 

!! Previous work: 1K to 2K for 32K renderers (Peterka, 2009). 

!!Our work: above ~46K renderers, 4K to 8K works better. 

!! -hybrid cases always performs better: fewer messages. 
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Memory Use – Data Decomposition 

!! 16GB RAM per node 

!! Sets lower bound on concurrency for this problem size: 1728-way 
parallel (no virtual memory!). 

!! Source data (1x), gradient field (3x) 

!! Want cubic decomposition.  

!! 1x2x3 block configuration per socket for –only. 

!! -hybrid has ~6x data per socket than –only 

!! Would prefer to run study on 8-core CPUs to maintain cubic shape 
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Memory Use – MPI_Init() 

!! Per PE memory: 

!!About the same at 1728, over 2x at 216000. 

!! Aggregate memory use: 

!!About 6x at 1728, about 12x at 216000. 

!!At 216000, -only requires 2GB of memory for 
initialization per node!!! 
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Memory Use – Ghost Data 

!! Two layers of ghost cells required for this problem: 

!! One for trilinear interpolation during ray integration loop. 

!! Another for computing a gradient field (central differences) for shading. 

!! Hybrid approach uses fewer, but larger data blocks. 

!! ~40% less memory required for ghost data (smaller surface area) 

!! Reduced communication costs 
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Comparing our results to classic 
hybrid parallel factors 
!! Factors in hybrid parallelism performance 

!! Synchronization overhead. 

"! Had two MPI tasks per node, not one, to prevent work spreading across CPU. 

!! Load balance (intra- and inter-node). 

"! Studied extensively, comes down to communication 

!! Communication overhead and patterns. 

"! Hybrid implementation naturally lends itself to superior communication 
pattern 

!! Memory access patterns. 

"! Not presented 

!! Fixed costs of initialization. 

"! Ghost data generation cost reduced with hybrid parallelism 

"! MPI initialization cost reduced with hybrid parallelism 

!! Number of runtime threads. 

"! Not studied 



Summary of Results 

!! Absolute runtime: -hybrid twice as fast as                               
–only at 216K-way parallel.  

!! Memory footprint: -only requires 12x more                             
memory for MPI initialization then –hybrid 

!! Factor of 6x due to 6x more MPI PEs. 

!! Additional factor of 2x at high concurrency, likely a vendor MPI 
implementation (an N2 effect). 

!! Communication traffic: 

!! -hybrid performs 40% less communication than -only for ghost data 
setup. 

!! -only requires 6x the number of messages for compositing. 

!! Image: 46082 image of a ~45003 dataset generated using 
216,000 cores on JaguarPF in ~0.5s (not counting I/O time). 



Outline 

!! Overview of Hybrid Parallelism 

!! Examples 

!!Volume rendering 

!!Streamlines 



Once again, the word “hybrid” is 
being used in two contexts… 

!! The master-slave algorithm is a hybrid algorithm, 

sharing concepts from both parallelization-over-
data and parallelization-over-seeds. 

!! Hybrid parallelism involves using a mix of shared 
and distributed memory techniques, e.g. MPI + 
pthreads or MPI+CUDA. 

!! One could think about implement a hybrid particle 

advection algorithm in a hybrid parallel setting. 



Streamline integration using MPI-hybrid 
parallelism on a large multi-core architecture 

!! Implement parallelize-over-data and parallelize-over-

particles in a hybrid parallel setting (MPI + pthreads) 

!!Did not study the master-slave algorithm 

!! Run series of tests on NERSC Franklin machine (Cray) 

!! Compare        128 MPI tasks (non-hybrid)                                 
            vs   32 MPI tasks / 4 cores per task (hybrid) 

!! 12 test cases:    large vs small # of seeds                                                       
          uniform vs non-uniform seed locations                    

                    3 data sets                                                            



Hybrid parallelism for parallelize-over-data 

•! Expected benefits: 

•! Less communication and communicators 

•! Should be able to avoid starvation by                  

sharing data within a group. 

Starvation 



Measuring the benefits of hybrid 
parallelism for parallelize-over-data 



Measuring the benefits of hybrid 
parallelism for parallelize-over-data 



Gantt chart for parallelize-over-
data 



Hybrid parallelism for parallelize-
over-particles 

•! Expected benefits: 

•! Only need to read blocks once for node, instead of once 

for core. 

•! Larger cache allows for reduced reads 

•! “Long” paths automatically shared among cores on node 



Measuring the benefits of hybrid 
parallelism for parallelize-over-
particles 



Measuring the benefits of hybrid 
parallelism for parallelize-over-
particles 



Gantt chart for parallelize-over-
particles 



Summary of Hybrid Parallelism 
Study 

!! Hybrid parallelism appears to be extremely 
beneficial to particle advection. 

!! Didn’t implement the master-slave algorithm 

!!… but benefits shown at the spectrum extremes provide 

hope that hybrid algorithms will also benefit. 



Smart 

Processing  

Techniques 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 16, 2011 

Selected particles (red) and volume rendering of the plasma density 

Traces of the the selected particle-bunch 

Selecting particles of interest 



Outline 

!! Multi-resolution processing 

!!Space filling curves (from Valerio Pascucci) 

!!Wavelet compression (from John Clyne) 

!! In situ processing 

!!System overview (from Brad Whitlock) 

!!Example in action (from Jean Favre) 

!! Query-driven visualization 

!!Overview (from Wes Bethel) 

!!FastBit (from John Wu) 

!!Example in action (from Oliver Ruebel) 
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Multi-resolution techniques use 
coarse representations then refine. 

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of 

data 

(on disk) 

Read Process Render 

Processor 0 

Read Process Render 

Processor 1 

Read Process Render 

Processor 2 

Parallelized visualization 

data flow network 

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code 

P2!

P4!



Multi-resolution: pros and cons 

!! Pros 

!!Drastically reduce I/O & memory requirements 

!! Cons 

!! Is it meaningful to process simplified version of the 
data? 

!!How do we generate hierarchical representations?  
What costs do they incur? 



Difficult conversations in the future. 

!! Multi-resolution questions we should be asking our 
customers: 

!!Do you understand what a multi-resolution hierarchy 
should look like for your data? 

!!Who do you trust to generate it? 

!!Are you comfortable with your I/O routines generating 
these hierarchies while they write? 

!!How much overhead are you willing to tolerate on your 
dumps?  33+%? 

!!Willing to accept that your visualizations are not the 
“real” data? 



Outline 

!! Multi-resolution processing 

!!Space filling curves (from Valerio Pascucci) 

!!Wavelet compression (from John Clyne) 

!! In situ processing 
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!!FastBit (from John Wu) 

!!Example in action (from Oliver Ruebel) 



Valerio Pascucci 

University of Utah 

Cache Oblivious Progressive  

Methods for Regular Data 



We must achieve real-time interaction with 

large datasets on a wide variety of platforms 

The problem 

•! Large datasets of different type: 

terrains, satellite images, 8GB/

timestep (2k3 grids +time). 

•! Interactive rendering for  

real-time data exploration. 

•! Target platforms: desktop, 

parallel server, cluster. 



We apply three fundamental techniques to  

the visualization of large simulation data 

  The general approach 

•! Multi-resolution geometric representation: 

–! adaptive view-dependent refinement; 

–! minimal geometric output for selected 

 error tolerance. 

•! Cache oblivious external memory data layouts: 

–! exploit spatial and resolution coherency; 

–! no need for complicated paging techniques. 

•! Progressive processing:  

–! continuously improved rendering; 

–! scalability with the resources  

without budgeting. 



The General Infrastructure is Structured  

into Three Main Components  

Algorithm Design 
(Progressive Processing) 

Data Layout 
(Cache Oblivious) 

Processing Network 
(Data Access Path) 



General Data Layout 

Grouping the data by 
level of resolution 

Data coherent Progressive refinement of a 

hierarchical geometric data-structure 

Grouping the data by 

geometric proximity 



General Data Layout 



General Data Layout 



General Data Layout 



General Data Layout 



General Data Layout 



General Data Layout 



We exploit the correlation of bin/quad/oct-trees  

with the Lebesgue space-filling curves 

The Lebesgue curve is also known as Z-order, Morton, …. Curve. 

Special case of the general definition introduced by Guiseppe Peano in 

1890. 



Outline 

!! Multi-resolution processing 

!!Space filling curves (from Valerio Pascucci) 

!!Wavelet compression (from John Clyne) 

!! In situ processing 

!!System overview (from Brad Whitlock) 

!!Example in action (from Jean Favre) 

!! Query-driven visualization 

!!Overview (from Wes Bethel) 

!!FastBit (from John Wu) 

!!Example in action (from Oliver Ruebel) 



!∀#∃%∃&∋()∗+,∃−−.)/∋

0)1/∋(%2/∃∋∋

3∀4)/∀%∋(∃/&∃,∋5),∋6&∗)−+1∃,.7∋8∃−∃∀,71∋93(68:∋

No compression Coefficient prioritization (VDC2) 



()∗+,∃−−.)/∋)5∋−7.∃/4;7∋<∀&∀∋=.&1∋

=∀#∃%∃&−∋
•! >∀/2∋+)+?%∀,∋∗?%4≅∗∃<.∀∋5),∗∀&−∋∃∗+%)2∋=∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋

&∃71/.Β?∃−∋
–! Χ∆Ε∆∋0ΦΧΓ∋ΗΙΙΙ∋9−4%%∋.∗∀Ε∃−:ϑ∋ΚΕΕ∋96ΛΜ:ϑ∋Ν.,∀7∋9#.<∃):∋

•! ΧΟ&∃/<./Ε∋=∀#∃%∃&∋&∃71/.Β?∃−∋&)∋∗?%4≅<.∗∃/−.)/∀%ϑ∋Ε,.<<∃<∋−7.∃/4;7∋<∀&∀∋
.−∋,∃%∀4#∃%2∋−&,∀.Ε1&∋5),=∀,<∋

•! 6<#∀/&∀Ε∃−∋)5∋!∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋−&,∀&∃Ε.∃−∋5),∋−7.∃/4;7∋<∀&∀∋
./7%?<∃Π∋
–! 8∃<?7∃<∋−&),∀Ε∃∋7∀+∀7.&2∋

–! 8∃<?7∃<∋ΘΚ∋Α∀/<=.<&1∋

–! 8∃<?7∃<∋7)∗+?&∀4)/∋∀/<∋∗∃∗),2∋/∃∃<−∋∋
•! !∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋,∃∀<.%2∋−?++),&−∋1.∃,∀,71.7∀%∋<∀&∀∋,∃+,∃−∃/&∀4)/∋

•! ()∀,−∃/∃<∋∀++,)Ο.∗∀4)/−∋./∋1.∃,∀,712∋1∀#∃∋5∃=∃,∋Ε,.<∋+)./&−∋%∃∀<./Ε∋&)∋%∃−−∋+,)7∃−−./Ε∋
∀/<∋%∃−−∋∗∃∗),2∋

–! Φ,)Ε,∃−−.#∃∋,∃;/∃∗∃/&∋
•! Ν∀&∀∋∗∀2∋Α∃∋<∃%.#∃,∃<∋=.&1∋+,)Ε,∃−−.#∃%2∋./7,∃∀−./Ε∋<∃&∀.%ϑ∋+,)#.<./Ε∋7)∀,−∃∋

∀++,)Ο.∗∀4)/−∋&1∀&∋∗∀2∋Α∃∋−∃%∃74#∃%2∋,∃;/∃<∋∀%%∋&1∃∋=∀2∋?+∋&)∋&1∃∋),.Ε./∀%∋<∀&∀∋



!∀#∃%∃&∋&,∀/−5),∗−∋./∋∀∋/?&−1∃%%∋

•! Ρ.∗.%∀,∋&)∋Σ)?,.∃,∋&,∀/−5),∗−∋∀∋!∀#∃%∃&∋&,∀/−5),∗∋∃Ο+,∃−−∃−∋∀∋−.Ε/∀%∋!∀#∃∋∀−∋
%./∃∀,∋∃Ο+∀/−.)/∋Π∋

∋=1∃,∃∋%&∋∀,∃∋,∃∀%≅#∀%?∃<∋7)∃Τ7.∃/&−ϑ∋∀/<∋(&∋∀,∃∋Α∀−.−∋5?/74)/−∋

•! Σ),∋∗∀/2∋=∀#∃%∃&∋5?/74)/−∋&1∃∋&,∀/−5),∗∋7)∃Τ7.∃/&−ϑ∋%&∋ϑ∋∀,∃∋−.∗+%2∋Ε.#∃/∋
Α2∋&1∃∋.//∃,∋+,)<?7&Π∋

•! !∀#∃%∃&∋&,∀/−5),∗−∋1∀#∃∋−∃#∃,∀%∋Υ∃2∋<.ς∃,∃/7∃−∋5,)∗∋Σ)?,.∃,∋&,∀/−5),∗−∋

–! Ω∀−.−∋5?/74)/ϑ∋()∋.−∋∀∋=∀#∃%∃&ϑ∋/)&∋∀∋7)∗+%∃Ο∋∃Ο+)/∃/4∀%∋

–! !∀#∃%∃&−∋1∀#∃∋7)∗+∀7&∋−?++),&∋9Ξ∃,)∋#∀%?∃∋)?&−.<∃∋)5∋∀∋/∀,,)=∋./&∃,#∀%:∋

•! &,∀/−5),∗−∋7∀/∋%)7∀%.Ξ∃∋−.Ε/∀%∋<∃&∀.%−∋95,∃Β?∃/7.∃−:∋./∋4∗∃∋9−+∀7∃:∆∋Ψ1.−∋
&∃%%−∋?−∋/)&∋Ζ?−&∋∗+%#∋5,∃Β?∃/7.∃−∋∀,∃∋+,∃−∃/&∋Α?&∋∗+,−∋&1∃2∋)77?,∋

–! Σ),=∀,<∋∀/<∋./#∃,−∃∋&,∀/−5),∗−∋∀,∃∋7)∗+?&∀4)/∀%%2∋∃Τ7.∃/&Π∋.∀/∃∋7)∗+∀,∃<∋
&)∋.∀/0&12/∃∋5),∋Σ)?,.∃,∋

f (t) = al
l

" # l t( )
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!! Multi-resolution processing 

!!Space filling curves (from Valerio Pascucci) 

!!Wavelet compression (from John Clyne) 

!! In situ processing 

!!System overview (from Brad Whitlock) 

!!Example in action (from Jean Favre) 

!! Query-driven visualization 

!!Overview (from Wes Bethel) 

!!FastBit (from John Wu) 

!!Example in action (from Oliver Ruebel) 



In situ processing does visualization 
as part of the simulation. 

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

GetAccess 

ToData 
Process Render 

Processor 0 

Parallelized visualization data flow 

network Parallel Simulation Code 

GetAccess 

ToData 
Process Render 

Processor 1 

GetAccess 

ToData 
Process Render 

Processor 2 

GetAccess 

ToData 
Process Render 

Processor 9 

… … … … 



In situ: pros and cons 

!! Pros: 

!!No I/O! 

!!Lots of compute power available 

!! Cons: 

!!Very memory constrained 

!!Many operations not possible 

"!Once the simulation has advanced, you cannot go back and 

analyze it 

!!User must know what to look a priori 

"!Expensive resource to hold hostage! 



Difficult conversations in the future. 

!! Conversations we should be having with our 
customers... 

!!How much memory are you willing to give up for 
visualization? 

!!Will you be angry if the vis algorithms crash? 

!!Do you know what you want to generate a priori?   

"!Can you re-run simulations if necessary? 
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A Marriage Between Two Fairly Inflexible Partners… 

Simulation 

Visualization and 

Analysis 

Application 

Layer 

In 

Between 
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In Situ Processing Strategies 

We find 3 main strategies for in situ processing: 

In Situ Strategy Description Negative Aspects 

Loosely coupled Visualization and analysis run on 

concurrent resources and access 

data over network 

1)! Data movement costs 

2)! Requires separate resources 

Tightly coupled Visualization and analysis have 

direct access to memory of 

simulation code 

1)! Very memory constrained 

2)! Large potential impact 

(performance, crashes) 

Hybrid Data is reduced in a tightly coupled 

setting and sent to a concurrent 

resource 

1)! Complex 

2)! Shares negative aspects (to a 

lesser extent) of others 
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Loosely Coupled In Situ Processing 

#! I/O layer stages data into 

secondary memory 

buffers, possibly on other 
compute nodes 

#! Visualization applications 

access the buffers and 

obtain data 

#! Separates visualization 

processing from 

simulation processing 

#! Copies and moves data 

Simulation 

data 

Memory buffer 

data 

I/O Layer 

Possible network boundary 

Visualization tool 

read 
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Tightly Coupled Custom In Situ Processing 

#! Custom visualization routines are 

developed specifically for the 

simulation and are called as 
subroutines 

•! Create best visual 

representation 

•! Optimized for data layout 

#! Tendency to concentrate on very 

specific visualization scenarios 

#! Write once, use once 

Simulation 

data 

Visualization 

Routines 

images, etc 
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Tightly Coupled General In Situ Processing 

#! Simulation uses data adapter 

layer to make data suitable for 

general purpose visualization 
library 

#! Rich feature set can be called 

by the simulation 

#! Operate directly on the 

simulation’s data arrays when 

possible 

#! Write once, use many times 

images, etc 

Simulation 

data 

Data Adapter 

General 
Visualization Library 
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Tightly 

Coupled 

Loosely 

Coupled 

Hybrid 

Custom 

General ! 

Which Strategy is Appropriate? 

There have been many excellent 

papers and systems in this space.  

Different circumstances often merit 

different solutions. 

! 

! ! 
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Design Philosophy 

#! Visualization and analysis will be done in the same 

memory space as the simulation on native data to avoid 

duplication 

#! Maximize features and capabilities 

#! Minimize code modifications to simulations 

#! Minimize impact to simulation codes 

#! Allow users to start an in situ session on demand 

instead of deciding before running a simulation 

•! Debugging 

•! Computational steering 
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Selecting an In Situ Strategy 

#! Our strategy is tightly coupled, yet general 

#! Fully featured visualization code connects interactively 

to running simulation 

•! Allows live exploration of data for when we don’t 

know visualization setup a priori 

•! Opportunities for steering 

#! We chose VisIt as the visualization code 

•! VisIt runs on several HPC platforms 

•! VisIt has been used at many levels of concurrency 

•! We know how to develop for VisIt 
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Visualization Tool Architecture 

#! Clients runs locally and display 

results computed on the server 

Vis 

Server 

Vis 

Server 

Data 
Plugin 

Data 
Plugin 

Data 
Plugin 

Parallel Cluster Local VisIt Clients Files 

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Vis 

Server 

Vis Server 

Σ.%&∃,∋

Σ.%&∃,∋

Σ.%&∃,∋

Data Flow 

Network 

#! Server runs remotely in parallel, 

handling data processing for client 

#! Data processed in data flow 

networks 

#! Filters in data flow networks can 

be implemented as plug-ins 
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Coordination Among Filters Using Contracts 

Ρ)?,7∃∋
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x
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u
te
!

Contract1!
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data 
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L
ib

s
im

 

R
u

n
ti

m
e 

Coupling of Simulations and VisIt 

#! We created Libsim, a library that simulations use to let 

VisIt connect and access their data 

Simulation 

Libsim 

Front End 

Data 

Access 
Code 

Libsim 

Front End 

Data 

Access 
Code 

Data 

Ρ)?,7∃∋

Σ.%&∃,∋
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A Simulation Using Libsim 

Libsim 
Runtime 

Front 
end 

Parallel Cluster Local VisIt Clients 

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Ν
∀
&∀
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Simulation Code 

Simulation Code 

Simulation Code 

Data 

Access 
Code 

Libsim 
Runtime 

Front 
end 

Data 

Access 
Code 

Libsim 
Runtime 

Front 
end 

Data 

Access 
Code 

#! Front end library lets VisIt connect 

#! Runtime library processes the simulation’s data 

#! Runtime library obtains data on demand through user-
supplied Data Access Code callback functions 
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In Situ Processing Workflow 

1.! The simulation code launches and starts execution 

2.! The simulation regularly checks for connection 

attempts from visualization tool 

3.! The visualization tool connects to the visualization 

4.! The simulation provides a description of its meshes 

and data types 

5.! Visualization operations are handled via Libsim and 

result in data requests to the simulation 
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Instrumenting a Simulation 

Additions to the source code are usually minimal, and 

follow three incremental steps: 

Initialize Libsim 

and alter the 

simulation’s 
main iterative 

loop to listen 

for connections 

from VisIt. 

Create data 

access callback 

functions so 
simulation can 

share data with 

Libsim. 

Add control 

functions that 

let VisIt steer 
the simulation. 
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Adapting the Main Loop 

Exit 

Solve Next 

Step 

Check for 

convergence, 

end of loop 

Visualization 

Request 

Complete VisIt 

Connection 

Process VisIt 

Commands 

Process 

Console Input 

VisItDetectInput 

Initialize 
#! Libsim opens a 

socket and writes 

out connection 
parameters 

#! VisItDetectInput 

checks for: 

•! Connection 

request 

•! VisIt 

commands 

•! Console input 
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Sharing Data 

#! VisIt requests data on demand through data access 

callback functions 

•! Return actual pointers to your simulation’s data 

(nearly zero-copy) 

•! Return alternate representation that Libsim can free 

•! Written in C, C++, Fortran, Python 
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Sharing Data Example 

// Example Data Access Callback!

visit_handle!
GetVariable(int domain, char *name,!

void *cbdata)!
{!

    visit_handle h = VISIT_INVALID_HANDLE;!

    SimData_t *sim = (SimData_t *)cbdata;!
    if(strcmp(name, "pressure") == 0)!

    {!

        VisIt_VariableData_alloc(&h);!

        VisIt_VariableData_setDataD(h,!

            VISIT_OWNER_SIM, !
            1, sim->nx*sim->ny,!

            sim->pressure);!
    }!

    return h;!

}!

SimData_t 
    Nx=6 
    Ny=8 

    pressure 

Pass simulation 

buffer to Libsim 

Simulation Buffer 
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Supported Data Model 

#! Mesh Types 

•! Structured meshes 

•! Point meshes 

•! CSG meshes 

•! AMR meshes 

•! Unstructured & Polyhedral meshes 

#! Materials 

#! Species 

#! Variables 

•! 1 to N components 

•! Zonal and Nodal 
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Adding Control Functions 

#! The simulation 

provides 

commands to 
which it will 

respond 

#! Commands 

generate user 
interface controls 

in Simulations 

Window 
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Custom User Interfaces 

#! Simulation can provide UI 

description for more advanced 

computational steering 
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Libsim in Practice 

#! We conducted our experiments on a 216 node 

visualization cluster 

•! Two, 6 core 2.8GHz Intel Xeon 5660 processors 

•! 96Gb of memory per node 

•! InfiniBandQDR high-speed interconnect 

•! Lustre parallel file system 

#! We measured the impact of Libsim on a simulation’s 

main loop, without connecting to VisIt 

#! We measured memory usage after loading VisIt 

#! We instrumented GADGET-2, a popular cosmology 

code, with Libsim and measured performance 
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Impact on the Main Loop 

#! Measure cost of calling Libsim in the main loop 

#! Instrumenting the main loop for a parallel simulation 

requires calling VisItDetectInput and MPI_Bcast 

•! We timed how long it took to call both using 512 

cores 

•! 10K main loop iterations 

Cores VisItDetectInput 

overhead 

MPI_Bcast 

overhead 

Overhead loading VisIt 

runtime 
libraries 

512 2µs 8µs 1s (1 time cost) 
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Impact on Memory Usage 

#! Measure memory used before and after VisIt is 

connected 

#! Measured our updateplots example program 

#! Read values from /proc/<pid>/smaps 

Event Size Resident Set Size 

Simulation startup 8.75 Mb 512 Kb 

After Libsim Initialization 8.75 Mb 614 Kb 

After Loading VisIt 222 Mb 43.5 Mb 
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Impact on GADGET-2 Simulation 

#! GADGET-2, a distributed-memory parallel code for 
cosmological simulations of structure formation 

#! We measured in situ performance versus I/O 
performance at 3 levels of concurrency 

•! Render 2048*2048 pixel image 

•! Collective I/O and file-per-process I/O 

•! 16 million particles and 100 million particles 

#! Results show that in situ using a fully featured 
visualization system can provide performance 
advantages over I/O 

•! We relied on VisIt’s ability to scale (runs up to 
65,356 cores have been demonstrated) 
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Libsim/GADGET-2 Timing Results 

16M particles 32 cores 256 cores 

I/O 1 file 2.76s 4.72s 

I/O N files 0.74s 0.31s 

In situ 0.77s 0.34s 

100M particles 32 cores 256 cores 512 cores 

I/O 1 file 24.45s 26.7s 25.27s 

I/O N files 0.69s 1.43s 2.29s 

In situ 1.70s 0.46s 0.64s 

#! In situ competitive or faster than single file I/O with increasing cores 

#! It should be possible to do several in situ operations in the time needed for I/O 

#! Time savings compared to simulation followed by post processing 

•! I/O results are the average of 5 runs per test case 
•! In Situ results are averaged from timing logs for multiple cores 
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VisIt Connected Interactively to GADGET-2 
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Additional Results 

#! We have recently 

instrumented additional 

simulations to investigate 
Libsim’s scaling 

properties on a Cray XE6 

using up to 4224 cores 

#! We identified and 

corrected a performance 

bottleneck in Libsim’s 

environment detection 

functions 

Time to Detect Environment 
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Additional Results 

#! Simulation was run on 

11, 22, 44, 88 and 176 

nodes (24 cores/node) 

#! Each MPI task had a 

512x512x100 block of 

data to isocontour at 10 

different thresholds 

#! Parallel I/O to disk was 

done with netCDF-4, in 

files of size 27, 55, 110, 

221, and 442 Gb per 
iteration 

Time per iteration 
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Limitations of Implementation 

#! Memory intensive 

•! Runtime library cost is larger than with static-linking 

since we use the whole feature set 

•! Filters may use intermediate memory 

•! Zero-copy is not fully implemented 

#! We currently require an interactive session though with 

some changes we could avoid this 
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Future Work 

#! Provide additional functions for setting up visualization 

so in situ processing can be less user-driven 

#! Further limit resources consumed by the VisIt runtime 

libraries in order to lessen the impact that in situ 

analysis has on the simulation 

#! Characterize performance costs of using shared 

libraries on larger scale runs 
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Conclusion 

#! We have implemented Libsim, an easy to use library 

that enables in situ computations 

•! Provides access to a fully featured, parallel 

visualization and analysis tool that excels at scale 

•! Minimizes impact to simulation performance 

•! Minimizes the amount of new code that must be 

written 

•! Fully integrated with the open-source distribution of 

VisIt 
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In-situ Visualization 

Examples 

Dr. Jean M. Favre 

Scientific Computing Research Group 

20-05-2011 



Outline 

#! Problem description 

#! A 2D solver with parallel partitioning 

#! Need for ghost-nodes 

#! In-situ visualization 

–! Source code instrumentation 

–! Specify ghost-nodes 

–! Single stepping through the execution 



Solving a PDE and visualizing the execution 

Full source code solution is given here: 

#! http://portal.nersc.gov/svn/visit/trunk/

src/tools/DataManualExamples/

Simulations/contrib/pjacobi/ 

#! C, F90 and Python subdirectories 



A PDE with fixed boundary conditions 

Update grid with solver 

Fixed boundary conditions 

Laplace equation: !u = 0 

sin(" . x) 

sin(" . x) . sin(- ") 

0 0 



2D grid partitioning and initialization 

•!The grid is partitioned along the Y 

direction 

•!Boundary conditions are set 

•!A single line of ghost-nodes insure 

that the 5-point stencil is 

continuous across MPI task 
boundaries 



I/O patterns 

(mp+1) grid lines to read/write 

(mp) grid lines to read/write 

(mp) grid lines to read/write 

(mp+1) grid lines to read/write 

Check-pointing and restart 



Ghost data exchange 

Overlap Send and Receive 

Proc. 0 does not receive from “below” 

Proc. (N-1) does not send “above” 



VisIt’s libsim implements a tight coupling 

Desktop Machine Parallel Supercomputer 

node220 

node221 

node222 

node223 

simulation 

code VisIt 

library 
VisIt GUI 

and Viewer 

simulation 

code 

simulation 

code 

simulation 

code 

commands 

images 

M
P

I 
M

P
I 

M
P

I 

VisIt 

library 

VisIt 

library 

VisIt 

library 

•!Link simulation source code 

with visualization library. 

•!Data is shared via pointers. 



The source code needs to be instrumented 

1.! The execution flow needs to check for 

Visualization Requests 

2.! Once connected, the simulation code needs to 

advertize what data/meshes are available, and 

3.! Provide pointers to data, or wrap data into the 

expected form/shape 

Source code examples are instrumented with: 

#ifdef _VISIT_ 

#endif 



Application’s flow diagram (before and after) 

Connection to the 

visualization 

library is optional 

Execution is step-

by-step or in 

continuous mode 

Live connection 

can be closed 

and re-opened at 

later time 

Exit 

Initialize 

Check for 

convergence 

Solve next 

time-step 

Visualization 

requests 

Complete VisIt 

Connection 

Process VisIt 

Commands 

Process 

Console Input 

VisIt-Detect-

Input 



Step-by-step or continuous execution 

#! A simulation would normally not wait for a connection and 

execute as fast as possible. 

These examples however, pause immediately, so they 

won’t finish before you have time to connect!  

The call visitdetectinput(bool blocking, -1) instructs the 

simulation to wait for a connection at init time. 

The examples also block after each timestep so you have 

time to request multiple plots. 



Use VisIt        https://wci.llnl.gov/codes/visit 

Users select simulations to 

open as if they were files 

The Simulation’s 

window shows 

meta-data about 

the running code 

Control commands 

exposed by the code 

are available here 

All of VisIt’s existing 

functionality is accessible 



Data sharing 

#! The VisIt Data API has just a few callbacks 

–! GetMetaData() 

–! GetMesh() 

–! GetScalar(), GetVector() 

–! Each MPI rank provides the full mesh/data (with ghost 

regions) marked in a way similar to HDF5 hyperslabs or 

MPI_Type_create_subarray(). 



grid mesh for in situ graphics 

(mp+1) lines to send 

(mp+1) lines to send 

(mp+1) lines to send 

(mp+2) lines to send 

VisitRectMeshSetRealIndices(h, minRealIndex, maxRealIndex) 

Use ghost-nodes to prevent overlaps 



At least two entry points to the execution 

Execution of the 

next step can be 

triggered by: 

•!normal 

program flow, 

•!on-demand 

single-stepping 
from the GUI, 

•!console input. 



How much impact in the source code? 

The best suited simulations are those allocating large 

(contiguous) memory arrays to store mesh coordinates, 

connectivity, and variables. 

Memory pointers are used, and the simulation (or the 

visualization) can be assigned the responsibility to de-
allocate the memory when done. 

F90 example: 

allocate ( v(0:m+1,0:mp+1) ) 

visitvardatasetd(h, VISIT_OWNER_SIM, 1, (m+2)*(mp+2), v) 



How much impact in the source code? 

The least suited are those pushing the Object Oriented 

philosophy to a maximum. 

Example: Finite Element code handling a triangular mesh: 

TYPE Element 

 REAL(r8) :: x(3) 

 REAL(r8) :: y(3) 

 REAL(r8) :: h 

 REAL(r8) :: u 

 REAL(r8) :: zb(3) 

END TYPE Element 



How much impact in the source code? 

When data points are spread across many objects, there 

must be a new memory allocation and a  gathering done 

before passing the data to the Vis Engine 

REAL, DIMENSION(:), ALLOCATABLE :: cx 

ALLOCATE( cx(numNodes) , stat=ierr) 

DO iElem = 1, numElems+numHalos 

        DO i = 1, 3 

          cx(ElementList(iElem)%lclNodeIDs(i)) = ElementList(iElem)%x(i) 

        END DO 

END DO 

err = visitvardatasetf(x, VISIT_OWNER_COPY, 1, numNodes, cx) 



The in-situ library provides many features 

#! Access to scalar, vector, tensor arrays, and label 

#! CSG meshes, multi-block meshes, AMR meshes 

#! Polyhedra 

#! Material species 

#! Ability to save images directly from the simulation 

#! Interleaved XY, XYZ coordinate arrays 

#! Connecting in-situ does not mean you cannot do I/O 

to files anymore. 



The merits of libsim 

#! The greatest bottleneck (disk I/O) can be eliminated 

#! Not restricted by limitations of any file format 

#! No need to reconstruct ghost-cells from archived data 

#! All time steps are potentially accessible 

#! All problem variables can be visualized 

#! Internal data arrays can be exposed or used 

#! Step-by-step execution will help you debug your code and 

your communication patterns 

#! The simulation can watch for a particular event and trigger 

the update of the VisIt plots 
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Data subsetting eliminates pieces that 
don’t contribute to the final picture. 

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of 

data 
(on disk) 

Read Process Render 

Processor 0 

Read Process Render 

Processor 1 

Read Process Render 

Processor 2 

Parallelized visualization 

data flow network 

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code 



Data Subsetting: pros and cons 

!! Pros: 

!!Less data to process (less I/O, less memory) 

!! Cons: 

!!Only applicable to some algorithms 
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Query-Driven Visualization 

Kurt Stockinger, Kesheng (John) Wu, 

John Shalf, and Wes Bethel 

Computational Research Division 

Lawrence Berkeley National Laboratory 

November 2005 



Motivation and Problem Statement 

"! Too much data. 

"! Visualization “meat grinders” not 
especially responsive to needs of 
scientific research community. 

"! What scientific users want: 
•! Scientific Insight 

•! Quantitative results 

•! Feature detection, tracking, 
characterization 

•! (lots of bullets here omitted) 

"! See: 
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf 

http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf  



Motivation and Problem Statement 

"! Too much data. 

"! Visualization “meat grinders” not 
especially responsive to needs of 
scientific research community. 

"! What scientific users want: 
•! Scientific Insight 

•! Quantitative results 

•! Feature detection, tracking, 
characterization 

•! (lots of bullets here omitted) 

"! See: 
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf 

http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf  



Today’s Main Message 

"! Visualization stands to benefit in a huge way by leveraging technology 

from the field of scientific data management. 

"! An introduction to compressed bitmap indexing using reference points 

familiar to the visualization community. 

"! Compressed bitmap indexing: 

•! Has low storage overhead. 

•! Has low computational complexity (theoretically optimal). 

•! Accommodates n-dimensional queries. 

"! Topics for another day: 

•! Assisted/guided query posing. 

•! Effective visualization of n-dimensional data. 



Query-Driven Visualization: Visual Example 

"! CH4 > 0.3 

"! Temp < T1 

"! CH4 > 0.3 AND temp < T1 

"! CH4 > 0.3 AND temp < T2 

•! T1 < T2 



Architecture Overview: Generic Vis Pipeline 

Data Vis Render 



Architecture Overview: Query-Driven Pipeline 

Vis Render 

Index 

Data 
Query 

FastBit 

(Region 

Growing) 

DEX 



What is Query-Driven Visualization? 

"! Focus visualization processing on subsets of data deemed 

to be “interesting.” 

•! “Interesting” is something the user needs to define. 

"! Challenges 

•! How to define “interesting.” 

•! Formulation of definition (domain-specific). 

•! Expression of definition (semantic). 

•! Find interesting data quickly (data management). 

•! Effective visual presentation of “interesting data” (visualization). 

•! Architectures/deployment that complements existing visualization 
algorithms and applications (computer science). 



Value of Multi-dimensional Queries 

"! New opportunities for scientific insight: N-dimensional 

queries are the basis for complex analysis and hypothesis 

testing. 

•! What are the characteristics of a flame front? 

•! How are two (or n) Supernovae explosions similar/different? 

•! Will this vaccine work against the Bird Flu? 

•! Temporal-based queries and analysis. 

"! Reducing processing and interpretation load. 

•! 100TB datasets being queued up now. 

•! Increased spatial resolution. 

•! Lots more variables per cell. 

•! Can’t expect a user to visually process 100TB of data. 
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Finding Data Quickly: Why Bitmap Indices 

"! In the data management community, the bitmap indices 

have supplanted trees for “heavy lifting” queries. 

"! Bitmap indices do not suffer from curse of dimensionality. 

"! Bitmap indices used in all major commercial database 

systems. 

"! Caveat: Bitmap indexing is not the panacea for everything: 

•! Spatial vs. Data-value partitioning: visibility culling. 
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What is a Bitmap Index? 

"! Compact: one bit per distinct 

value per object. 

"! Easy and fast to build: O(n) vs. 

O(n log n) for trees. 

"! Efficient to query: use bitwise 

logical operations. 

(0.0 < H2O < 0.1) AND (1000 < 

temp < 2000) 

"! Efficient for multidimensional 

queries. 

•! No “curse of dimensionality” 

"! What about floating-point data? 

•! Binning strategies. 
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Bitmap Index Query Complexity and Space 

Requirements 

"! How Fast are Queries Answered? 

•! Let N denote the number of objects and H denote the number of hits of 
a condition. 

•! Using uncompressed bitmap indices, search time is O(N) 

•! With a good compression scheme, the search time is O(H) – the 
theoretical optimum. 

"! How Big are the Indices? 

•! In the worst case (completely random data), the bitmap index requires 
about 2x in data size (typically 0.3x). 

•! In contrast, 4x space requirement not uncommon for tree-based 
methods. 

•! Curse of dimensionality: for N points in D dimensions: 

•! Bitmap index size: O(N*D) 

•! Tree-based method: O(N**D) 
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FASTBIT TUTORIAL 

Outline 

$! Overview 

$! Basic functions 

$! Top-level interface 

$! Application example 

John Wu 

Scientific Data Management 

Berkeley Lab 

http://sdm.lbl.gov/fastbit 



Overview 

!! Task: given a large collection of data, efficiently 
locate records satisfying a set of conditions 

!! Example data – structured data: 
!! High-energy physics data – billions of collision events, 

with hundreds of variables 

!! Simulation data on a mesh – each mesh point may be 
viewed as a record/row, each variable a column 

!! Example queries: 
!! Count how many records where pressure > 1000 and 

temperature between 500 and 1000 

!! Select all records where momentum > … 

!! FastBit solves this search problem with 

!! Column data organization 

!! Bitmap index 

!! FastBit is an award-winning open-source software 

!! R&D100 award (2008) 

!! Used in a number of research projects 
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What FastBit Is Not 

" ! Not a database management system (DBMS)  

!! It is much closer to BigTable than to ORACLE 

!! Most SQL commands are not supported 

" ! Not a plug-in for a DBMS 

!! It is a stand-alone data processing tool 

!! No DBMS is needed in order to use FastBit 

" ! Not an internet search engine  

!! FastBit is primarily for structured data; internet search 

engines are for text (unstructured) data 

" ! Not a client-server system 

!! FastBit has been used in server programs, but by itself, it is 

not a client-server system 



How Do I Use FastBit 

!! Command-line tools 

!!A handful of command-line tools are available to load 

data, build indexes, and query data 

!! Write your own program using FastBit as a library 

!!Two levels of API: 

"!Class table 

"!Class part + query 

!!FastBit is written in C++ 

"!Other languages may access FastBit through C API 



FastBit Data Model 

!! FastBit is designed to search multi-

dimensional append-only data 

!! Conceptually in table format 

"! rows % objects 

"! columns % attributes 

!! FastBit uses vertical (column-oriented) 

data organization 

!! Efficient for searching 

!! Physical data layout 

!! A data table is split into “partitions” 

!! Each partition is a directory in a file system 

!! Each directory has a metadata file describing 

the data partition 

!! Each column is represented by a file 
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A < 2 2 < A 

Basic Bitmap Index 
!! First commercial version 

!! Model 204, P. O’Neil, 1987 

!! Easy to build: faster than building B-trees 

!! Efficient for querying: only bitwise logical 
operations 

!! A < 2 & b0 OR b1 

!! A > 2 & b3 OR b4 OR b5 

!! Efficient for multi-dimensional queries 

!! Use bitwise operations to combine the 
partial results 

!! Size: one bit per distinct value per row 

!! Definition: Cardinality == number of 
distinct values 

!! Compact for low cardinality attributes, 
say, cardinality < 100 

!! Worst case: cardinality = N, number of 
rows; index size: N*N bits 
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Strategies to Improve Bitmap 
Index 
!! Compression 

!! Reduce the size of each individual bitmap 

!! Best known compression method: Byte-aligned Bitmap Code 
[Antoshenkov 1994], used in Oracle bitmap index 

!! Word-Aligned Hybrid (WAH) code trades some disk space for much 
more efficient query processing 

!! Encoding 

!! Basic equality encoding, in Model 204 

!! Multi-component encoding [Chan and Ioannidis 1998] 

!! Multi-level encoding 

!! Binning 

!! Equal-width binning, equal-depth binning, … 

!! Has to perform candidate check to rule out false positives, time for 
candidate check dominates the total query response time 

!! Order-preserving Bin-based Clustering (OrBiC) 
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Outline 

!! Multi-resolution processing 

!!Space filling curves (from Valerio Pascucci) 

!!Wavelet compression (from John Clyne) 

!! In situ processing 

!!System overview (from Brad Whitlock) 

!!Example in action (from Jean Favre) 

!! Query-driven visualization 

!!Overview (from Wes Bethel) 

!!FastBit (from John Wu) 

!!Example in action (from Oliver Ruebel) 



High Performance Multivariate Visual Data Exploration for 

Extremely Large Data 

Oliver Rübel1,2,3, Prabhat1, Kesheng Wu1, Hank Childs4, Jeremy Meredith5,  
Cameron G.R. Geddes6, Estelle Cormier-Michel6, Sean Ahern5, Gunther H. Weber1,2,3, 

Peter Messmer7, Hans Hagen2, Bernd Hamann3,2,1 and E. Wes Bethel1,3 

1. Computational Research Division, Lawrence Berkeley National Laboratory (LBNL) 
2. International Research Training Group 1131, University of Kaiserslautern, Germany 

3. Institute for Data Analysis and Visualization, University of California, Davis 
4. Lawrence Livermore National Laboratory (LLNL) 

5. Oak Ridge National Laboratory (ORNL) 
6. LOASIS program of Lawrence Berkeley National Laboratory 
7. Tech-X Corporation 



Overview: 

•! Enable rapid knowledge discovery from large, complex, multivariate, time-varying data 

•! Illustrate in a case study how our system can be used to effectively analyze laser  

  wakefield particle acceleration data 

•! Analyze the performance of our system 
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Motivation 



Motivation 
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Simulation 

Data Analysis 

Create Animation Analyze & Identify Particle Bunch Trace Particles 

Laboratory Experiments 



System Design 

References:  

•! VisIt is available from https://wci.llnl.gov/codes/visit/ 

•! FastBit is available from https://codeforge.lbl.gov/projects/fastbit 
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Data Selection 

Why FastBit: 

•! Query response time is a linear function of the number of hits O(H) 

•! Particle tracking:  Naïve approach: O(n2) 

     With FastBit:       O(H*t) 

•! Conditional histogram:  Naïve approch:   O(n)    

 FastBit:             O(H) 

•! Linear spatial and computational complexity with respect to number of data dimension 

•! FastBit indices can be constructed fast 

•! FastBit indices are small compared to, e.g., B-trees [2 Fig.7] 

•! FastBit implements fastest known bitmap compression technique [2] 

•! R&D100 award [1] 

We use FastBit to accelerate: 

•! Computation of conditional histograms used for rendering of parallel coordinates 

•! Multi-dimensional threshold queries used for identification of particles of interest 

•! ID-queries used for tracing of particles over time 

References:  
[1] FastBit is available from https://codeforge.lbl.gov/projects/fastbit 
[2] K. Wu, E. Otoo, and A. Shoshani, ”Compressing bitmap indexes for faster search operations”, ACM Transactions on Database Systems, 

  vol 31, pp. 1-38, 2006 
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Introduction to Parallel Coordinates 
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2D Scatter-plot Parallel Coordinates 

X Y 
X 
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Introduction to Parallel Coordinates 
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Advantages: 

•! Enable display of many data dimensions in parallel 

•! Easy to use interface for defining data selections 

•! Immediate feedback is provided while performing data selection 

Scatter-plot Matrix Parallel Coordinates 
X 

Y 

PX 

Y 



Histogram-based Parallel Coordinates 

References:  

•! M. Novotny and H. Hauser, “Outlier-preserving focus+context visualization in parallel coordinates,” IEEE Transactions on Visualization and Computer 

Graphics, vol. 12, no. 5, pp. 893-900. 2006. 
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Disadvantages: 

•! Rendering and computational complexity is directly proportional to the size of the 

displayed data 

•! Clutter 

•! Occlusion 

•! Order dependent visualization 

Solution: 

•! Use 2D-histograms as basis for the rendering not the raw data 



Histogram-based Parallel Coordinates cont. 
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Histogram-based Parallel Coordinates cont. 

Histograms are computed on request: 

•! Enable rendering also of data subsets using histogram-based parallel coordinates 

•! Enable rendering with arbitrary number of bins 

•! Enable close zoom-ins and smooth drill-downs into the data 

Allow use of adaptively binned histograms: 

•! Enable more accurate representation of the data in lower-level-of-.detail views 
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32x32 uniform binning 32x32 adaptive binning 



Laser Wakefield Particle Acceleration 

Advantages: 

•! Can achieve electric fields thousands of times stronger than in conventional accelerators 

  % Can achieve high acceleration in very short distance. 

References:  

•! C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, “High-Quality Electron Beams from a 

Laser Wakefield Accelerator using Plasma-Channel Guiding,” Nature, vol. 438, pp. 538-541, 2004 

Image courtesy of http://worldwakesurfingchampionships.com 
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Data Overview 

•! Simulation: VORPAL, 2D and 3D 

•! Particle data: 

•! Scattered data  

•! x,y,z (location), px, py, pz (momentum), id (particle identifier) 

•! No. of particles per timestep:  

•! ~ 0.4*106 – 30*106 (in 2D)  

•! ~80*106– 200 *106 (in 3D) 

•! Total size:  

•! ~1.5GB – >30GB (in 2D)  

•! ~100GB – >1TB (in 3D) 

•! Field data: 

•! Defined on regular grid 

•! Electric field, magnetic field, and RhoJ 

•! Resolution: Typically ~0.02-0.03µm longitudinally, and ~ 0.1-0.2µm transversely 

•! Total size:  

•! ~3.5GB - >70GB (in 2D)  

•! ~200GB - >2TB (in 3D) 

References:  

•! Cameron G.R. Geddes, ”Plasma Channel Guided Laser Wakefield Accelerator,” Phd-thesis, University of California, Berkeley, CA, 2005 

•! C. Nieter and J. R. Cary, “VORPAL: A Versatile Plasma Simulation Code,” J. Comput. Phys., vol. 196, no. 2, pp. 448–473, 2004. 
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3D Analysis Example 
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Selected particles (red) and volume rendering of the plasma density 

Traces of the the selected particle-bunch 

Selecting particles of interest 



Performance tests 

!! Serial Performance Tests: 

•!  Unconditional histograms: 

•!  Characterize the effect of varying the number of bins on the histogram 

computation 

•!  Conditional histograms: 

•!  Characterize the effect of the number of hits on the computation of conditional 

histograms 

•!  Particle Selection: 

•!  Characterize the performance of ID-queries 

!! Parallel Performance Tests: 

•!  Characterize scalability of: 

•!  Computation of histograms 

•!  Particle tracking 

!! Setup: 

•!  Compare FastBit-enabled application to Custom application performing a sequential 

scan  
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Serial Performance I: Unconditional Histograms  

Dataset: 

•! 3D dataset consisting of 30 timesteps 

•! ~90 million particles per timestep  

•! ~7GBper timestep (including ~2GB for the index)  

•! ~210GB total size 

Test platform: 

•! Workstation  

•! CPU: 2.2GHz AMD Opteron 

•! Memory: 4GB RAM 

•! OS: SuSE Linux 

Motivation     System Design     Parallel Coordinates     Use Case     Performance     Conclusions 

Setup: 

•! Test performance with 

increasing bin counts: 

32x32 to 2048x2048 

Custom:  

•! Perform sequential scan 

Use Case: 

•! Initial computation of the 

context of parallel coordinates 



Serial Performance II: Conditional Histograms 
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Setup: 

•! Compute 1024x1024 histogram 

with varying condition (px>...)  

•! By increasing the threshold the 

number of hits decreases 

Custom: 

•! Perform sequential scan 

Use Case: 

•! Focus of parallel coordinates 

Dataset: 

•! 3D dataset consisting of 30 timesteps 

•! ~90 million particles per timestep  

•! ~7GBper timestep (including ~2GB for the index)  

•! ~210GB total size 

Test platform: 

•! Workstation  

•! CPU: 2.2GHz AMD Opteron 

•! Memory: 4GB RAM 

•! OS: SuSE Linux 



Serial Performance III: Particle Selection 

Setup: 

•! Perform ID query at a single 

timestep and vary the size of 

the search set S 

Custom: 

•! Compare particle ID of each 

data record to the search set  

•! Use efficient search algorithm 

with O(log(S)) complexity 

Use Case: 

•! Trace particle subset  
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Dataset: 

•! 3D dataset consisting of 30 timesteps 

•! ~90 million particles per timestep  

•! ~7GBper timestep (including ~2GB for the index)  

•! ~210GB total size 

Test platform: 

•! Workstation  

•! CPU: 2.2GHz AMD Opteron 

•! Memory: 4GB RAM 

•! OS: SuSE Linux 



Parallel Performance I: Histograms 

Dataset: 

•! 3D dataset consisting of 100 timesteps 

•! ~177 million particles per timestep  
•! ~10 GB per timestep  

•! ~1TB total size 

Test platform: (as of July.2008) 

•! franklin.nersc.gov 

•! 9,660 nodes,  19K cores Cray XT4 system  
•! Filesystem: Lustre Parallel Filesystem 

•! Each node consists of:  

•! CPU: 2.6 GHz, dual-core AMD Opteron  

•! Memory: 4GB 

•! OS: Compute Node Linux 

Test setup: 

•! Restrict operations to a single core of each node to 

maximize I/O bandwidth available to each process 
•! Assign data subsets corresponding to individual 

timesteps to individual nodes for processing 

•! Generate five 1024x1024 histograms for position 

and momentum fields at each timestep 

•! Conditon: px>7*1010 

•! Levels of parallelism: 1, 2, 5, 10, 20, 50, 100 
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Parallel Performance II: Particle Tracking 

Test setup: 

•! Same as for histogram computation 

•! Track 500 particles (Condition: px>1011) over 100 
timesteps 

Results: 

•! FastBit is able to track 500 particles over 1.5TB of 

data in 0.15 seconds 

Performance of original IDL scripts: 

•! ~2.5 hours to track 250 particles in small 5GB 

dataset 
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Summary 

!! Query-driven visualization allows for rapid 
exploration of data (in some scenarios). 

!! The FastBit library is an example technology for 
accelerating loading of subsets. 

!! These techniques fit well within the data flow 
framework. 



Putting it all together: a visualization 

application for very large data 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 17, 2011 



VisIt is an open source, richly featured, 
turn-key application for large data. 

!! Used by: 

!!Visualization experts 

!!Simulation code developers 

!!Simulation code consumers 

!! Popular 

!!R&D 100 award in 2005 

!!Used on many of the Top500 

!!>>>100K downloads 

217 pin reactor cooling simulation   

Run on ! of Argonne BG/P   

Image credit: Paul Fischer, ANL 

1 billion  

grid points 



Terribly Named!!! 
… intended for much more than just visualization 

Data Exploration Presentations 

Visual 

Debugging 

Analysis 



!! Techniques that span scientific domains (e.g. 

integration, volumes, surface areas, fluxes, connected 
components, chord length distributions) 

!! Specialized analysis (e.g. hohlraum flux at AGEX) 

Detector 

at AGEX 

Detector 

provided by VisIt 

(synthetic diagnostic) 

What sort of analysis is appropriate 
for VisIt? 



Aside: Why address so many postprocessing 
problems with a single program? 

!! Answer: It is economical to do so. 

!! For developers: shared assets / code re-use 

!!Data infrastructure (esp. for large data) 

!! File readers 

!! Proper interpretation of data (ie material interface 
reconstruction) 

!! Shared algorithms (multiple ways to slice & dice data) 

!!High flexibility and extensibility 

!! For users: 

!! Learn a single tool 

!!Divisions between areas of postprocessing often blur 



VisIt has a rich feature set. 

!! Meshes: rectilinear, curvilinear, unstructured, point, AMR 

!! Data: scalar, vector, tensor, material, species 

!! Dimension: 1D, 2D, 3D, time varying 

!! Rendering (~15): pseudocolor, volume rendering, hedgehogs, 
glyphs, mesh lines, etc… 

!! Data manipulation (~40): slicing, contouring, clipping, 

thresholding, restrict to box, reflect, project, revolve, … 

!! File formats (~115) 

!! Derived quantities: >100 interoperable building blocks 

!! +,-,*,/, gradient, mesh quality, if-then-else, and, or, not 

!! Many general features: position lights, make movie, etc 

!! Queries (~50): ways to pull out quantitative information,  
        debugging, comparative analysis 



VisIt employs a parallelized client-
server architecture. 

!! Client-server 
observations: 

!!Good for remote 
visualization 

!! Leverages available 
resources 

!! Scales well 

!!No need to move data 

!! Additional design 
considerations: 

!! Plugins 

!! Heavy use of VTK 

!! Multiple UIs: GUI 

(Qt), CLI (Python), 

more… 

remote machine 

Parallel vis resources 

User 

data 

 localhost – Linux, Windows, Mac 

Graphics 

Hardware 



It takes a lot of research to make VisIt work 

Systems research: 

Adaptively applying 

algorithms in a 
production env. 

Algorithms research: 

How to efficiently 

calculate particle 
paths in parallel. 

Algorithms research: 

How to volume 

render efficiently in 
parallel. 

Methods research: 

How to incorporate 

statistics into 
visualization. 

Scaling research: 

Scaling to 10Ks of 

cores and trillions of 
cells. 

Architectural 

research: 

Hybrid parallelism + 
particle advection 

Systems research: 

Using smart DB 

technology to 
accelerate processing 

Architectural 

research: 

Parallel GPU 
volume rendering 

Algorithms research: 

Reconstructing 

material interfaces for 
visualization 

Algorithms research: 

Accelerating field 

evaluation of huge 
unstructured grids 



The VisIt team focuses on making a 
robust, usable product for end users. 

•! Manuals 
–! 300 page user manual 

–! 200 page command line interface manual 

–! “Getting your data into VisIt” manual 

•! Wiki for users (and developers) 

•! Revision control, nightly regression testing, etc 

•! Executables for all major platforms 

•! Tutorial & day long class, complete with exercises 

Slides from the VisIt class 



VisIt is a vibrant project with many 
participants. 

!! Over 75 person-years of effort 

!! Over 1.5 million lines of code 

!! Partnership between: Department of Energy’s Office of Science, 
National Nuclear Security Agency, and Office of Nuclear Energy, 
the National Science Foundation XD centers (Longhorn XD and 
RDAV), and more…. 

2004-6 

User community 

grows, including 

AWE & ASC  

Alliance schools 

Fall ‘06 

VACET is funded 

Spring ‘08 

AWE enters repo 

2003 

LLNL user  

community 

transitioned         

to VisIt 

2005 

2005 R&D100 

2007 

SciDAC Outreach  

Center enables 

Public SW repo 

2007 

Saudi Aramco 

funds LLNL to  

support VisIt       

Spring ‘07 

GNEP funds LLNL  

to support GNEP  

codes at Argonne 

Summer‘07 

Developers from  

LLNL, LBL, & ORNL 

Start dev in repo 

‘07-’08 

UC Davis & UUtah  

research done  

in VisIt repo 

2000 

Project started 

‘07-’08 

Partnership with 

CEA is developed 

2008 

Institutional support 

leverages effort from  

many labs 

More developers 

Entering repo all 

the time 



VisIt: What’s the Big Deal? 

!! Everything works at scale 

!! Robust, usable tool 

!! Features that span the “power of visualization”: 
!!Data exploration 
!!Confirmation 
!!Communication  

!! Features for different kinds of users: 
!!Vis experts 
!!Code developers 
!!Code consumers 

!! Healthy future: vibrant developer and user communities 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



Can I use a pre-built VisIt binary or do 
I need to build it myself? 

!! Pre-built binaries work on most modern machines. 

!! … but pre-built binaries are serial only. 

!!Why the VisIt team can’t offer parallel binaries:       
Your MPI libraries, networking libraries are unlikely to 
match ours 

!! Recommendation: try to use the pre-builts first and 
build VisIt yourself if they don’t work. 

!! Also: all VisIt clients run serial-only.  If you want to 
install VisIt on your desktop to connect to a remote 
parallel machine, serial is OK. 



How do I use pre-built VisIt binaries? 

!! A: Go to http://www.llnl.gov/visit 



How do I use pre-built VisIt binaries? 



How do I use pre-built VisIt binaries? 

Important 



How do I use pre-built VisIt binaries? 



How do I use the pre-built VisIt binaries? 

!! Unix & Mac: 
!!Download install script 

!!Download binary 

!! Run install script 

!! --or— 

!!Download binary 

!!Untar 

!! Windows: 
!!Download installer program & run 

!! Full install notes: 
!! https://wci.llnl.gov/codes/visit/2.1.0/INSTALL_NOTES 

Good for host profiles, 

maintaining multiple versions, 
multiple OSs 

Quick & easy  



Important step: choosing host profiles 

!! Many supercomputing sites have set up “host profiles”. 

!! These files contain all the information about how to connect 
to their supercomputers and how to launch parallel jobs 
there. 

!! You select which profiles to install when you install VisIt. 

!! Profiles that come with VisIt: 

!!NERSC, LLNL Open, LLNL Closed, ORNL, Argonne, TACC, 
LBNL desktop network, Princeton, UMich CAC 

!! Other sites maintain profiles outside of VisIt repository. 

!! If you know folks running VisIt in parallel at a site not listed 
above, ask them for their profiles. 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



Building VisIt from scratch 

!! Building VisIt from scratch on your own is very 
difficult. 

!! … but the “build_visit” script is fairly reliable. 



What “build_visit” does 

!! Downloads third party libraries 

!! Patches them to accommodate OS quirks 

!! Builds them 

!! Creates “config-site” file, which communicates 
information about where 3rd party libraries live to 
VisIt’s build system. 

!! Downloads VisIt source code 

!! Builds VisIt 



“build_visit” details 

!! There are two ways to use build_visit: 

!!Curses-style GUI 

!!Command line options through –console 

"!Developers all use –console and it shows!! 

!! Tips: 

!!Don’t build every third party library unless you really 
need to. 

!!Set up a “—thirdparty-path”. 



“build_visit” details 

!! Q: How long does build_visit take?  A: hours 

!! Q: I have my own Qt/VTK/Python, can I use those? 

!!Hank highly recommends against 

!! Q: What happens after build_visit finishes? 

!!A1: you can run directly in the build location 

!!A2: you can make a package and do an install like you 
would with the pre-built binaries  



“build_visit” details 

!! Most common build_visit failures:  
!! gcc is not installed 

!! X11 development package is not installed 

!!OpenGL development package is not installed 

!! Most common VisIt runtime failure: really antique 
OpenGL drivers. 
!!Hank runs SUSE 9.1 (from 2005) at home. 

!! Build process for Windows is very different.  Rarely a 
need to build on Windows, aside from VisIt 
development. 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



How to get your data into VisIt 

!! There is an extensive (and up-to-date!) manual on 
this topic: “Getting Your Data Into VisIt” 

!! Three ways: 

!! Use a known format 

!! Write a file format reader 

!! In situ processing 

!! Latter two covered in 
afternoon course 



File formats that VisIt supports 

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, 
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, Gadget, 
Images (TIFF, PNG, etc), ITAPS/MOAB, LAMMPS, 
NASTRAN, NETCDF, Nek5000, OpenFOAM, PLOT3D, 
PlainText, Pixie, Shapefile, Silo, Tecplot, VTK, Xdmf, Vs, 
and many more 
!! 113 total readers 

!! Some readers are more robust than others. 
!! For some formats, support is limited to flavors of a file a 

VisIt developer has encountered previously (e.g. Tecplot). 



File formats that VisIt supports 

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, 
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, Gadget, 
Images (TIFF, PNG, etc), ITAPS/MOAB, LAMMPS, 
NASTRAN, NETCDF, Nek5000, OpenFOAM, PLOT3D, 
PlainText, Pixie, Shapefile, Silo, Tecplot, VTK, Xdmf, Vs, 
and many more 

!! BOV: raw binary data for rectilinear grid 
!!#you have a brick of data and you add an ASCII header 

that describes dimensions 

!! PlainText: reads space delimited columns. 
!!Controls for specifying column purposes 



File formats that VisIt supports 

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, 
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, 
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB, 
LAMMPS, NASTRAN, NETCDF, Nek5000, 
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile, 
Silo, Tecplot, VTK, Xdmf, Vs, and many more 

!! NETCDF: VisIt reader understands many (but not all) 
conventions 

!! Pixie: most general HDF5 reader 
!!Many other HDF5 readers 



File formats that VisIt supports 

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, 
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, 
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB, 
LAMMPS, NASTRAN, NETCDF, Nek5000, 
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile, 
Silo, Tecplot, VTK, Xdmf, Vs, and many more 

!! Xdmf: specify an XML file that describes semantics 
of arrays in HDF5 file 

!! VizSchema (Vs): add attributes to your HDF5 file 
that describes semantics of the arrays. 



File formats that VisIt supports 

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, 
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, 
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB, 
LAMMPS, NASTRAN, NETCDF, Nek5000, 
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile, 
Silo, Tecplot, VTK, Xdmf, Vs, and many more 

!! VTK: not built for performance, but it is great for 
getting into VisIt quickly 

!! Silo: higher barriers to entry, but performs well and 
fairly mature 



VTK File Format 

!! The VTK file format has both ASCII and binary 
variants. 

!!Great documentation at                                     
http://www.vtk.org/VTK/img/file-formats.pdf 

!! Easiest way to write VTK files: use VTK modules 

!!… but this creates a dependence on the VTK library 

!! You can also try to write them yourself, but this is an 
error prone process. 

!! Third option: visit_writer 



VisItWriter writes VTK files 

!! It is a “library” (actually a single C file) that writes VTK-
compliant files. 
!! The typical path is to link visit_writer into your code and 

write VTK files 

!! There is also Python binding for visit_writer. 
!! The typical path is to write a Python program that converts 

from your format to VTK 

!! Both options are short term: they allow you to play with 
VisIt on your data. If you like VisIt, then you typically 
formulate a long term file format strategy. 

!! More information on visit_writer: 
!! http://visitusers.org/index.php?title=VisItWriter 



Python VisItWriter in action 



Silo file format 

!! Silo is a mature, self-describing file format that 
deals with multi-block data. 

!! It has drivers on top of HDF5, NetCDF, and “PDB”. 

!! Fairly rich data model 

!! More information: 

!!https://wci.llnl.gov/codes/silo/ 



Silo features 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



How to get help when you run into 
trouble 

!! Six options: 
!!FAQ 

"!http://visit.llnl.gov/FAQ.html 

!!Documentation 
"!https://wci.llnl.gov/codes/visit/doc.html 

"!http://www.visitusers.org 

!!VisIt-users mailing list 

!!VisIt-users archives 

!!VisIt users forum 

!!VisIt-help-XYZ mailing list 



Manuals & documentation 

!! Getting started manual 

!! Users manual (old, but still useful) 

!! Python interface (to be updated in two weeks) 

!! Getting Data Into VisIt 

!! VisIt Class Slides 

!! VisIt Class Exercises 

!! This Tutorial 



Visitusers.org 

!! Users section has lots of 
practical tips: 

!!“I solved this problem 
with this technique” 

!!“Here’s my script to do 
this functionality” 

!! In practical terms, this is 
a staging area for 
formal documentation in 
the future. 



FAQ: http://visit.llnl.gov/FAQ.html  



VisIt-users mailing list 

!! You may only post to mailing list if you are also a subscriber 

!! Approximately 400 recipients, approx. 300 posts per 
month. 

!! Developers monitor mailing list, strive for 100% response 
rate 

!! Response time is typically excellent (O(1 hour)) 
!! International community really participates … not unusual for a 

question from Australia to be answered by a European all while 
I’m asleep 

!! List: visit-users@ornl.gov 

!! More information: 
https://email.ornl.gov/mailman/listinfo/visit-users 

!! Archive: https://email.ornl.gov/pipermail/visit-users/ 



VisIt User Forum 

!! Increasingly popular option; you can post without 
receiving 300 emails a month 

!!But it is viewed by less people and less well supported. 

!! http://www.visitusers.org/forum 



Visit-help-xyz 

!! Some customer groups pay for VisIt funding and get 
direct support. 

!!These customers can post directly to visit-help-xyz 
without being a subscriber 

!!The messages are received by all VisIt developers and 
supported communally 

!! Lists: 

!!Visit-help-asc, visit-help-scidac, visit-help-gnep, visit-
help-ascem 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



It is possible (although non-trivial) to 
write a custom user interface to VisIt) 



“How to make VisIt work after you get 
home” 

!! How to get VisIt running on your machine 

!!Downloading and installing VisIt 

!!Building VisIt from scratch 

!! How to get VisIt to read your data 

!! How to get help when you run into trouble 

!! I like the power of VisIt, but I hate the interface 

!! How to run client-server 



How to run client-server 

!! There are two critical pieces: 

!!Connecting to the remote machine 

!!Getting an engine launched on the remote machine 

!! This job is made substantially easier by host profiles. 

!! (Demonstration) 



VisIt’s Data Model 

!! A very rich data model 

!!Closer to the “computational model” 

!! Internally implemented with VTK 

!! Many conventions built on top of VTK 



!! All data in VisIt lives on a mesh 

!! Discretizes space into points and cells 

!!1D, 2D, 3D 

!!All of these over time (up to 4D) 

!!Can have lower-dimensional meshes in a 
higher-dimensional space (e.g. 2D surface in 3D space) 

!! Provides a place for data to be located 

!! Defines how data is interpolated 

Meshes 



Mesh types 

!! 1D Curves 

!! 2D/3D meshes 

!!Rectilinear 

!!Curvilinear 

!!Unstructured 

!!Points 

!!Molecular 

Unstructured 

Rectilinear Curve 

Curvilinear 

Points 

Molecular 



Variables 

!! Scalars, Vectors, Tensors 

!! Sits on points or cells of a mesh 

!!Points: linear interpolation 

!!Cells: piecewise constant 

!! Can have different dimensionality 
than the mesh (e.g. 3D vector data 
on a 2D mesh) 



Materials 

!! Describes disjoint spatial regions at a sub-grid level 

!! Volume/area fractions 

!! VisIt will do high-quality sub-grid material interface 
reconstruction 



Species 

!! Similar to materials, describes sub-grid variable 
composition 

!! Used for mass fractions 

!! Generally weights other scalars (e.g. partial 
pressure) 



Parallel meshes 

!! Provides aggregation for meshes 

!! A mesh may be composed of hundreds of thousands 
of mesh “blocks”. 

!! Allows data parallelism 



AMR meshes 

!! Mesh blocks can be associated with patches and 
levels. 

!! Allows for aggregation of meshes into AMR 
hierarchy levels. 



Developing a Database plugin 

!! Three basic steps: 

!!Use xmledit tool to describe basics of reader 

!!Use xml2plugin tool to generate VisIt “glue” code. 

!!Fill in required class methods 



xmledit 

!! GUI tool to edit all information related to plugins 

!! Used to define type of 
database, filename 
extensions, etc. 

!! Creates XML file that 
describes your reader 



Types of database plugins 

!! Two axes: domains and time 

!! Moving down and to the right adds 
complexity 

Single 

Domain!

Multiple 

Domain!

Single 

Timestep!
STSD! STMD!

Multiple 

Timesteps!
MTSD! MTMD!



We will make an “IEEE” plugin 

!! Reads text file of points with data  

!! Simple STSD database 



Generate glue code 

General Info 

Makefile 

!! xml2plugin takes your XML file and generates many 
files 

“Glue” 



“Glue” 







Implement your parts 

!! You need to fill in: 

!!Constructor/Destructor 

!!PopulateDatabaseMetaData 

!!GetMesh 

!!GetVar (can be empty, but won’t) 

!!GetVectorVar (can be empty) 

!! You need to write: 

!!Code to read the file 

!! Add class members as necessary 



Build, install, and run 

!! Makefile will automatically put plugin in your 
~/.visit/plugins directory or in the public location if 
you desire. 

!! VisIt will load your plugin at launch 



How can we better understand data? 

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011 

Mesh-Based 

Simulation 

Data 



Visualization works because it uses the brain’s highly 

effective visual processing system. 

Billions of 

data points 

Millions of pixels 

But is this still a good idea at extreme scale? 

!! (Note that visualization is often 

reducing the data … so we 
are frequently *not* trying to 

render all of the data points.) 



Visualization works because it uses the brain’s highly 

effective visual processing system. 

Billions of 

data points 

One idea: add more pixels! 

35M pixel powerwall 

!! Bonus: big displays act as collaboration centers. 

!! But rendering so many pixels is hard … cannot 
simply use a GPU 



Increased resolution often leads to 
small but important differences 

27B elements 1B elements 

These differences are normally hard to see. 

The best solution is often to add quantitative 

metrics. 



Topological analysis was used to count and 
compare the number of bubbles. 

Credit:  

Daniel Laney, Timo 

Bremer, Valerio 

Pascucci, et al. 

Can we build metrics 

like this for the many 

scientific problems we 
are interested in? 



6 

Comparative techniques have applications to better visualization 
of time-varying data. 

Rayleigh-Taylor  

Instability 
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Comparative techniques have applications with parameter 
studies/ensembles 

Average Speed 

 over all 25 

Studying 25 Rayleigh-Taylor Instability calculations (all at 10us) 

Two “knobs”: turbulent viscosity coefficient, buoyancy coefficient 

Five values for each knob, 25 pairs total 

Max Speed 

 over all 25 

Min Speed 

 over all 25 

Biggest  

difference 

 over all 25 
(is this uncertainty 

quantification?) 
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Comparative techniques have applications with parameter 
studies/ensembles 

Speed  

for one  

simulation K0=V0, K1=V0 "  

K0=V4, K1=V4 "  

… 
K0=V0, K1=V1 "  

Coloring by  

Simulation ID 

with maximum 

speed 

Coloring by  

“Knob 0” 

(buoyancy) 

with maximum 

speed 

K0=V0"  

K0=V1"  

K0=V2"  

K0=V3"  

K0=V4"  

Coloring by  

“Knob 1” 

(viscosity) 

with maximum 

speed 

K1=V0"  

K1=V1"  

K1=V2"  

K1=V3"  

K1=V4"  



Summary   

!! The purpose of these slides was to show more than 
parallel isosurfacing… 


